精英家教网 > 高中数学 > 题目详情
7.已知正方体ABCD-A1B1C1D1,各棱长为1,O是底面ABCD对角线的交点.
(1)求棱锥B1-A1BC1的体积;
(2)求证:D1O∥面A1BC1

分析 (1)转换底面求三棱锥B1-A1BC1的体积.
(2)取A1C1的中点E,连接NE,BE,证明NEBM是平行四边形,可得MN∥BE,即可证明MN∥平面A1BC1

解答 解:(1)解:正方体ABCD-A1B1C1D1,各棱长为1
三棱锥B1-A1BC1的体积=三棱锥B-A1B1C1的体积=$\frac{1}{3}×1×1×1$=$\frac{1}{3}$.
(2)证明:取A1C1的中点M,连接BM,则
∵M,O分别为B1D1,BD的中点,
∴BO平行且等于MD1
∴BOD1M是平行四边形,
∴MB∥OD1
∵MB?平面A1BC1,MB?平面A1BC1
∴OD1∥平面A1BC1

点评 本题考查直线与平面平行的判定,考查三棱锥B1-A1BC1的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2x+$\frac{m}{{2}^{x}}$(m为常数)为偶函数.
(1)求实数m的值;
(2)判断f(x)在[0,+∞)上的单调性,并用单调性的定义证明;
(3)求不等式f(logax)>$\frac{5}{2}$(a>0且a≠1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若在定义域内存在实数x满足f(-x)=f(x),则称函数f(x)为“局部偶函数”.
(Ⅰ)判断函数f(x)=x-$\frac{1}{x}$是否为“局部偶函数”,并说明理由;
(Ⅱ)若F(x)=$\left\{\begin{array}{l}{{9}^{x}-k•{3}^{x}+{k}^{2}-16,x>0}\\{k•{3}^{x}-{9}^{x},x<0}\end{array}\right.$为“局部偶函数”,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\sqrt{(x-4)^{2}+4}$+$\sqrt{{x}^{2}+1}$的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设方程x2-$\sqrt{10}$x+2=0的两根为α、β,求$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为2$\sqrt{3}$,圆C的面积小于13.
(1)求圆C的标准方程;
(2)一条光线从点A(4,1)出发,经直线y=x-5反射后与圆C相切,求入射光线所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.己知A(-1,4),B(3,-2),以AB为直径的圆交直线y=x+1于M、N两点,则|MN|=5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}的前n项和为Sn,且Sn=2an+1,则an=-2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=|4x-x2|-a的零点个数为3,则a=4.

查看答案和解析>>

同步练习册答案