点P是椭圆=1上的一点,F1、F2是焦点,且∠F1PF2=30°,求△F1PF2的面积.
科目:高中数学 来源:山西省山大附中2009-2010学年高二下学期3月月考理科数学试题 题型:044
如图,F是椭圆=1(a>b>0)的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BD,B,C,F三点确定的圆M恰好与直线x+y+3=0相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,在x轴上是否存在点N,使得NF恰好为△PNQ的内角平分线,若存在,求出点N的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:山西省山大附中2009-2010学年高二下学期3月月考文科数学试题 题型:044
如图,F是椭圆=1(a>b>0)的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为,点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线x+y+3=0相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,在x轴上是否存在点N,使得NF恰好为△PNQ的内角平分线,若存在,求出点N的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2009年高考数学理科(重庆卷) 题型:044
已知以原点
O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点.(Ⅰ)若C,D的坐标分别是,求|MC|·|MD|的最大值;
(Ⅱ)如图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M在x轴上的射影,点Q满足条件:,.求线段QB的中点P的轨迹方程;
查看答案和解析>>
科目:高中数学 来源:河北省正定中学2012届高三第二次综合考试数学理科试题 题型:044
如图,已知A是椭圆=1(a>b>0)上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.
(1)求椭圆的离心率;
(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省高三预测卷3数学 题型:解答题
(本小题满分16分)
已知F是椭圆:=1的右焦点,点P是椭圆上的动点,点Q是圆:+=上的动点.
(1)试判断以PF为直径的圆与圆的位置关系;
(2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com