精英家教网 > 高中数学 > 题目详情
2.如图,半径为4的球O中有一内接圆往,则圆柱的侧面积最大值是32π.

分析 设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值

解答 解:∵设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα,
∴圆柱的侧面积为:32πsin2α,当且仅当α=$\frac{π}{4}$时,sin2α=1,圆柱的侧面积最大,
∴圆柱的侧面积的最大值为:32π.
故答案为:32π.

点评 本题是基础题,考查球的内接圆柱的知识,圆柱的侧面积的最大值的求法,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\left\{\begin{array}{l}x+2{\;}^{\;}(x<0)\\{x^2}{\;}^{\;}{\;}^{\;}(0≤x<2)\\ \frac{1}{2}x{\;}^{\;}{\;}^{\;}(x≥2)\end{array}\right.$.
(1)求f(f(2))的值
(2)画出此函数的图象.
(3)若f(x)=2,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|y=log2(1-x)<1},集合B={y|y=2x,x∈A},则A∩B=($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=|x2-2x|-a有三个零点,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若F1,F2是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的两个焦点,P是双曲线上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某植物园要建形状为直角梯形的苗圃(如图所示),两条邻边借用夹角为135°的两面墙,另两条边的总长为60m,设垂直于底边的腰长为x(m).
(1)求苗圃面积S关于边长x的函数解析式S(x)并指出该函数的定义域;
(2)当x为何值时,面积S最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.${∫}_{1}^{2}$(x+2x)dx等于(  )
A.(x+2x)|${\;}_{1}^{2}$B.(x2+2xln2)|${\;}_{1}^{2}$
C.($\frac{{x}^{2}}{2}$+2x)|${\;}_{1}^{2}$D.($\frac{{x}^{2}}{2}$+$\frac{{2}^{x}}{ln2}$)|${\;}_{1}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,Sn≠0,且Sn=a1(an-1).求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.证明:若f(x)=ax+b,则f($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{f({x}_{1})+f({x}_{2})}{2}$.

查看答案和解析>>

同步练习册答案