精英家教网 > 高中数学 > 题目详情
20.已知f(x)=$\frac{2^x}{3a}+\frac{3a}{2^x}$(a>0)是R上的偶函数.
(Ⅰ)求a的值;
(Ⅱ)若?x∈R,f(x)+m>0恒成立,求实数m的取值范围.

分析 (1)利用定义判断f(-x)=$\frac{{2}^{-x}}{3a}$$+\frac{3a}{{2}^{-x}}$=$\frac{2^x}{3a}+\frac{3a}{2^x}$=f(x),得出a的值;
(2)不等式整理为f(x)>-m恒成立,只需求出f(x)的最小值,利用均值定理可得最小值.

解答 解:(1)设任意的x∈R,则
f(-x)=$\frac{{2}^{-x}}{3a}$$+\frac{3a}{{2}^{-x}}$=$\frac{2^x}{3a}+\frac{3a}{2^x}$,
∴3a=$\frac{1}{3a}$,
∴$a=\frac{1}{3}$;
(2)?x∈R,f(x)+m>0恒成立,
∴f(x)>-m恒成立,
∵2x+$\frac{1}{{2}^{x}}$≥2,
∴2≥-m,
∴m>-2.

点评 考查了函数奇偶性的应用和利用均值定理求函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若关于x的不等式sinx>|t-2|存在实数解,则实数t的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(1,2)C.(1,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左焦点F1作斜率为$\frac{\sqrt{3}}{3}$直线交椭圆于A,B两点,若|AF1|=7|BF1|,则e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y+x≤t}\\{y+2x≤4}\end{array}\right.$下,当2≤t≤4时,则函数z=3x+2y的最大值的范围是[6,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知曲线C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-sinθ)=6.
(I)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(Ⅱ)过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是偶函数,在(0,+∞)上单调递增,则下列不等式成立的是(  )
A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={x|3x+2>0},$B=\left\{{x\left|{\frac{x+1}{x-3}>0}\right.}\right\}$,则A∩B=(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx+$\frac{a}{ex}$,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案