精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

【答案】(1)ρ26ρcosθ8ρsinθ+210.(2)92

【解析】

(1)先将化简成直角坐标方程,再利用化简即可.

(2)为以为底,的距离为高可知要求面积的最小值即求的距离最大值.再设求解最值即可.

1)∵曲线C的参数方程为,(θ为参数),有.

上下平方相加得曲线C的直角坐标方程为,

化简得

,代入得曲线C的直角坐标方程有:

2)设点到直线ABx+y+20的距离为d,

,

sin)=﹣1时,d有最小值,

所以△ABM面积的最小值S92

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别是双曲线的左、右焦点,且相交于点().

(1)求椭圆的标准方程;

(2)设直线与椭圆交于A,B两点,以线段AB为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.

)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.

)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

(命题意图)本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,过点的直线交于两点.

1)若直线与圆相切,求直线的方程;

2)若直线轴的交点为,且,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校近几年来通过书香校园主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是(

A.2013年到2016年,该校纸质书人均阅读量逐年增长

B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7

C.2013年至2018年,该校纸质书人均阅读量的极差是45.3

D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=x22x+1的图象与函数gx)=3cosπx的图象所有交点的横坐标之和等于(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,右顶点,上顶点为B,左右焦点分别为,且,过点A作斜率为的直线l交椭圆于点D,交y轴于点E.

1)求椭圆C的方程;

2)设P的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案