精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方形ABCDA1B1C1D1中,EFM分别是棱B1C1BB1C1D1的中点,是否存在过点EM且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.

【答案】详见解析.

【解析】试题分析: 由正方体的特征及NBB1的中点,可知平面A1FC与直线DD1相交,且交点为DD1的中点G.若过ME的平面α与平面A1FCG平行,注意到EMB1D1FG,则平面α必与CC1相交于点N,结合ME为棱C1D1B1C1的中点,易知C1NC1C.于是平面EMN满足要求.

试题解析:

如图,设N是棱C1C上的一点,且C1NC1C时,平面EMN过点EM且与平面A1FC平行.

证明如下:设H为棱C1C的中点,连接B1HD1H.

C1NC1C

C1NC1H.

EB1C1的中点,

ENB1H.

CFB1H

ENCF.

EN平面A1FCCF平面A1FC

EN平面A1FC.

同理MND1HD1HA1F

MNA1F.

MN平面A1FCA1F平面A1FC

MN平面A1FC.

ENMNN

平面EMN平面A1FC.

点睛:本题考查线面平行的判定定理和面面平行的判定定理的综合应用,属于中档题.直线和平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; 平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面分别平行,则这两个平面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程,有两个不相等的实数根,比较与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,().

(1)若函数的图象在上有两个不同的交点,求实数的取值范围;

(2)若在上不等式恒成立,求实数的取值范围;

(3)证明:对于时,任意,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分,第(1)问 4 分,第(2)问 8 分)

某闯关游戏规则是:先后掷两枚骰子,将此实验重复轮,第轮的点数分别记为,如果点数满足,则认为第轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束。

求第一轮闯关成功的概率;

如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分,第(1)问 6 分,第(2)问 6 分)

某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:

连锁店

A店

B店

C店

售价(元)

80

86

82

88

84

90

销售量(件)

88

78

85

75

82

66

(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程

(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届云南曲靖一中高三文上学期月考四】已知函数

(1)若的极值点的极大值

(2)求的范围使得恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.

观看方式

年龄(岁)

电视

网络

150

250

120

80

求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;

(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.

1)求的解析式;

2)若关于的方程有三个不同解,求的取值范围;

3)若,求的取值集合.

查看答案和解析>>

同步练习册答案