【题目】如图,在正方形ABCD-A1B1C1D1中,E,F,M分别是棱B1C1,BB1,C1D1的中点,是否存在过点E,M且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.
【答案】详见解析.
【解析】试题分析: 由正方体的特征及N为BB1的中点,可知平面A1FC与直线DD1相交,且交点为DD1的中点G.若过M,E的平面α与平面A1FCG平行,注意到EM∥B1D1∥FG,则平面α必与CC1相交于点N,结合M,E为棱C1D1,B1C1的中点,易知C1N∶C1C=.于是平面EMN满足要求.
试题解析:
如图,设N是棱C1C上的一点,且C1N=C1C时,平面EMN过点E,M且与平面A1FC平行.
证明如下:设H为棱C1C的中点,连接B1H,D1H.
∵C1N=C1C,
∴C1N=C1H.
又E为B1C1的中点,
∴EN∥B1H.
又CF∥B1H,
∴EN∥CF.
又EN平面A1FC,CF平面A1FC,
∴EN∥平面A1FC.
同理MN∥D1H,D1H∥A1F,
∴MN∥A1F.
又MN平面A1FC,A1F平面A1FC,
∴MN∥平面A1FC.
又EN∩MN=N,
∴平面EMN∥平面A1FC.
点睛:本题考查线面平行的判定定理和面面平行的判定定理的综合应用,属于中档题.直线和平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; 平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面分别平行,则这两个平面平行.
科目:高中数学 来源: 题型:
【题目】选修:不等式选讲
已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,().
(1)若函数与的图象在上有两个不同的交点,求实数的取值范围;
(2)若在上不等式恒成立,求实数的取值范围;
(3)证明:对于时,任意,不等式恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,第(1)问 4 分,第(2)问 8 分)
某闯关游戏规则是:先后掷两枚骰子,将此实验重复轮,第轮的点数分别记为,如果点数满足,则认为第轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束。
求第一轮闯关成功的概率;
如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量,求的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,第(1)问 6 分,第(2)问 6 分)
某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销售量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.
观看方式 年龄(岁) | 电视 | 网络 |
150 | 250 | |
120 | 80 |
求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.
(1)求的解析式;
(2)若关于的方程有三个不同解,求的取值范围;
(3)若,求的取值集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com