精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中a为常数,e是自然对数的底数,,曲线在其与y轴的交点处的切线记作,曲线在其与x轴的交点处的切线记作,且.

1)求之间的距离;

2)对于函数的公共定义域中的任意实数,称的值为函数处的偏差.求证:函数在其公共定义域内的所有偏差都大于2.

【答案】(1)(2)证明见解析

【解析】

1)求出分别与轴、轴的交点坐标,求出函数的导数,根据两条切线平行求出参数的值,即可求出切线方程,利用两平行线的距离公式求间的距离.

2)得到函数的偏差为:,利用导数分析,证明即可.

1)函数的图像与y轴的交点为,函数的图像与x轴的交点为

,得

.

切线过点,斜率为;切线过点,斜率为

两平行切线间的距离

2函数的偏差为:

,易得上是增函数,方程有且只有一个正实根,记为,则.

时,;当时,

函数上单调递减,在上单调递增,

即函数在其公共定义域内的所有偏差都大于2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.

(1)求证:直线AC垂直于直线SD

(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的最小周期为.

1)求的值及的单调递增区间;

2)将函数的图象向右平移个单位,再将图象上各点的横坐标缩短为原来的(纵坐标不变)得到函数的图象,若关于x的方程在区间上有且只有一个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,实数

1)设,判断函数上的单调性,并说明理由;

2)设时,的定义域和值域都是,求的最大值;

3)若不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知C是以AB为直径的圆周上一点,平面.

1)求证:平面平面

2)若异面直线PBAC所成的为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,相邻两项anan+1是关于x的方程:x2+3nx+bn0nN*)的两实根,且a11

1)若Sn为数列{an}的前n项和,求S100

2)求数列{an}{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为菱形,且,过侧面中线的一个平面与直线垂直,并与此四棱锥的面相交,交线围成一个平面图形.

1)画出这个平面图形,并证明平面

2)若,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(|x|﹣b)2+c,函数g(x)=x+m.

(1)当b=2,m=﹣4时,f(x)g(x)恒成立,求实数c的取值范围;

(2)当c=﹣3,m=﹣2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018101日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:

1)已知小李20189月份上交的税费是295元,10月份月工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?

2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.

(ⅰ)请根据频率分布直方图估计该公司员工税前收入的中位数;

(ⅱ)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?

查看答案和解析>>

同步练习册答案