精英家教网 > 高中数学 > 题目详情

(09年丰台区期末理)(13分)

       某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,有只能从中选一

门。该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同。

       (Ⅰ)求3个学生选择了3门不同的选修课的概率;

(Ⅱ)求恰有2门选修课这3个学生都没有选择的概率;

(Ⅲ)设随机变量为甲、乙、丙这三个学生选修数学史这门课的人数,求的分布列与数学期望。

解析:(Ⅰ)3个学生选择了3门不同的选修课的概率:P1 =…… 3分

       (Ⅱ)恰有2门选修课这3个学生都没有选择的概率:P2=… 6分

       (Ⅲ)设某一选择修课这3个学生选择的人数为,则=0,1,2,3

              P (= 0 ) =          P (= 1) =

              P (= 2 ) =      P (= 3 ) = ……………… 10分

0

1

2

3

P

              ∴的分布列为:

    

 

 

              ∴期望E= 0×+1+2×+3×=     …………………… 13分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年丰台区期末理)(13分)

       已知向量=,=,且x

       (Ⅰ)求?及|?|;

(Ⅱ)若f ( x ) = ?|?|的最小值为,且,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年丰台区期末理)(14分)

    设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F

斜角为的直线交椭圆MAB两点。

       (Ⅰ)求椭圆M的方程;

(Ⅱ)求证| AB | =

(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年丰台区期末理)(14分)

    设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F

斜角为的直线交椭圆MAB两点。

       (Ⅰ)求椭圆M的方程;

(Ⅱ)求证| AB | =

(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年丰台区期末理)(14分)

    设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F

斜角为的直线交椭圆MAB两点。

       (Ⅰ)求椭圆M的方程;

(Ⅱ)求证| AB | =

(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年丰台区期末理)(13分)

       已知函数f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =? 3ax 4x的义域为[0,1]。

       (Ⅰ)求a的值;

    (Ⅱ)若函数g ( x )在区间[0,1]上是单调递减函数,求实数的取值范围。

查看答案和解析>>

同步练习册答案