精英家教网 > 高中数学 > 题目详情
12.已知O是正三角形ABC内部的一点,$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则△OAC的面积与△OAB的面积之比为$\frac{2}{3}$.

分析 对所给的向量等式进行变形,根据变化后的条件对两个三角形的面积进行探究

解答 解:$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则变为$\overrightarrow{OA}+\overrightarrow{OC}+2\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}$,如图D,E分别是对应边的中点
由平行四边形法则知$\overrightarrow{OA}+\overrightarrow{OC}=2\overrightarrow{OE}$,$2\overrightarrow{OB}+2\overrightarrow{OC}=4\overrightarrow{OD}$
故$\overrightarrow{OE}=2\overrightarrow{OD}$
由于三角形ABC是等边三角形,
故S△AOC=$\frac{2}{3}$S△ADC=$\frac{2}{3}$×$\frac{1}{2}$×S△ABC=$\frac{1}{3}$S△ABC
又D,E是中点,故O到AB的距离是正三角形ABC高的一半
所以S△AOB=$\frac{1}{2}$×S△ABC
∴△OAC的面积与△OAB的面积之比为$\frac{2}{3}$;
故答案为:$\frac{2}{3}$.

点评 本题考查向量的加法与减法,及向量共线的几何意义,本题中把两个三角形的面积都用三角形ABC的面积表示出来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知在等差数列{an}中,a2=3,a6=11,记数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Sn,若Sn≤$\frac{m}{10}$对n∈N*恒成立,则正整数m的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}中a1=1,an+1=2an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}f(x+3),\;x<1\\{log_2}x,\;x≥1\end{array}$,则f(-1)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,平均成绩为z,则从频率分布直方图中可分析出x、y、z的值分别为(  )
A.0.9,35,15.86B.0.9,45,15.5C.0.1,35,16D.0.1,45,16.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且$\frac{2}{y}+\frac{8}{x}$=1,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.2个红球,3个黄球,排成一排,同色球不区分,则共有10(用数字作答)种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二次函数f(x)=ax2+bx+c(a>0)的零点为2和3,那么不等式ax2+bx+c<0的解集为(  )
A.{x|2<x<3}B.{x|-3<x<-2}C.{x|$\frac{1}{3}$<x$<\frac{1}{2}$}D.{x|-$\frac{1}{2}$<x$<-\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知点列An(xn,0)满足:$\overrightarrow{{A_0}{A_n}}•\overrightarrow{{A_1}{A_{n+1}}}$=a-1其中n∈N*,又已知x0=-1,x1=1,
(1)若a=0,数列xn的通项公式(n∈N*);
(2)若a=2,点$B(\sqrt{2},0)$,记an=|BAn|(n∈N*),且{an}的前n项和为Sn,求证:Sn<$\frac{{4\sqrt{2}-2}}{7}$.

查看答案和解析>>

同步练习册答案