分析 对所给的向量等式进行变形,根据变化后的条件对两个三角形的面积进行探究
解答 解:$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则变为$\overrightarrow{OA}+\overrightarrow{OC}+2\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}$,如图D,E分别是对应边的中点
由平行四边形法则知$\overrightarrow{OA}+\overrightarrow{OC}=2\overrightarrow{OE}$,$2\overrightarrow{OB}+2\overrightarrow{OC}=4\overrightarrow{OD}$
故$\overrightarrow{OE}=2\overrightarrow{OD}$
由于三角形ABC是等边三角形,
故S△AOC=$\frac{2}{3}$S△ADC=$\frac{2}{3}$×$\frac{1}{2}$×S△ABC=$\frac{1}{3}$S△ABC
又D,E是中点,故O到AB的距离是正三角形ABC高的一半
所以S△AOB=$\frac{1}{2}$×S△ABC
∴△OAC的面积与△OAB的面积之比为$\frac{2}{3}$;
故答案为:$\frac{2}{3}$.
点评 本题考查向量的加法与减法,及向量共线的几何意义,本题中把两个三角形的面积都用三角形ABC的面积表示出来.
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.9,35,15.86 | B. | 0.9,45,15.5 | C. | 0.1,35,16 | D. | 0.1,45,16.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|2<x<3} | B. | {x|-3<x<-2} | C. | {x|$\frac{1}{3}$<x$<\frac{1}{2}$} | D. | {x|-$\frac{1}{2}$<x$<-\frac{1}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com