精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)若曲线与直线交于两点,点,求的值.

【答案】(1);(2)

【解析】

1)由曲线的参数方程,消去参数可直接得到普通方程;由直线的极坐标方程,可直接写出其直角坐标方程;

2)先由点在直线上,得到直线的参数方程为为参数),代入曲线的普通方程,结合韦达定理,即可求出结果.

(1)曲线的普通方程为

直线的直角坐标方程为.

(2)点在直线上,直线的参数方程为为参数),

将直线的参数方程代入曲线的普通方程化简,得.

设点所对应的参数分别为,则.

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为 的椭圆(a>b>0)过点M(,1).

(1)求椭圆的方程.

(2)已知与圆x2+y2=相切的直线l与椭圆C相交于不同两点A,B,O为坐标原点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是,每次参加科目B考试的成绩为合格的概率是,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.

1)求X的所有可能取的值;

2)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,从流水线上随机抽取100件产品,统计其质量指标值并绘制频率分布直方图(如图):

规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损1元,优等品每件盈利3元,特优品每件盈利5元.以这100 件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.

(1)求每件产品的平均销售利润;

(2)该企业为了解年营销费用(单位:万元)对年销售量(单位:万件)的影响,对近5年年营销费用和年销售量数据做了初步处理,得到如图的散点图及一些统计量的值.

16.30

23.20

0.81

1.62

表中.

根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.

①求关于的回归方程;

⑦用所求的回归方程估计该企业应投人多少年营销费,才能使得该企业的年收益的预报值达到最大?(收益=销售利润营销费用,取

附:对于一组数据,…,其回归直线均斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点在y轴上,焦点到准线的距离为2,且对称轴为y.

1)求抛物线C的标准方程;

2)当抛物线C的焦点为时,过F作直线交抛物线于,A、B两点,若直线OAOBO为坐标原点)分别交直线MN两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球运动员的投篮命中率为,他想提高自己的投篮水平,制定了一个夏季训练计划为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15分,平均得分为15分,得分的方差为执行训练后也统计了10场比赛的得分,成绩茎叶图如图所示:

请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差;

如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2017年市居民平均家庭净收入走势图(家庭净收入=家庭总收入一家庭总支出),如图所示,则下列说法错误的是( )

A. 2017年2月份市居国民的平均家庭净收入最低

B. 2017年4,5,6月份市居民的平均家庭净收入比7、8、9月份的平均家庭净收入波动小

C. 2017年有3个月市居民的平均家庭净收入低于4000元

D. 2017年9、10、11、12月份平均家庭净收入持续降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,在圆上任取一点的垂直平分线交于点.(如图).

(1)求点的轨迹方程

(2)若过点的动直线与(1)中的轨迹相交于两点.问:平面内是否存在异于点的定点,使得恒成立?试证明你的结论.

查看答案和解析>>

同步练习册答案