【题目】设命题p:若对任意的x(0,2]都成立,则在[0,2]上是增函数,下列函数中能说明命题p为假命题的有( )
A.B.
C.D.
科目:高中数学 来源: 题型:
【题目】已知在等比数列{an}中,=2,,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。
(I)点E在线段PB上,满足CE//平面PAD,求的值。
(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个不同的单位向量与之间满足关系:,其中.
(1)若,求的解析式;
(2)能否和垂直?能否和平行?若不能,则说明理由;若能,则求出对应的k值;
(3)求与夹角的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.
求证:平面BCED;
记的中点为M,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在斜三棱柱中,AB=1,AC=2,,AB⊥AC,底面ABC.
(1)求直线与平面所成角的正弦值;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的方程为,曲线:(为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线:.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线与轴围成的区域(不含边界)内,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com