精英家教网 > 高中数学 > 题目详情

【题目】设命题p:若对任意的x(0,2]都成立,则[0,2]上是增函数,下列函数中能说明命题p为假命题的有( )

A.B.

C.D.

【答案】A

【解析】

可根据初等函数的单调性,或利用导数先找到满足对任意的x(0,2]都成立的函数,再分析函数在x(0,2]上的单调性得到结论即可.

因为x(0,2]时,都有,但因为,所以x(0,2]上不单调,故A可以;

因为满足对任意的x(0,2]都成立,x(0,2]上单调递增,故B不可以;

所以函数R上单调递增,当x(0,2]成立,

对任意的x(0,2]都成立,[0,2]上是增函数,故C不可以,

因为

所以为增函数,因为

所以存在使

故函数在上递减,在上单调递增,

不满足对任意的x(0,2]都成立,故D不可以.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,证明:函数有两个零点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=

(I)点E在线段PB上,满足CE//平面PAD,求的值。

(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不同的单位向量之间满足关系:,其中

1)若,求的解析式;

2能否和垂直?能否和平行?若不能,则说明理由;若能,则求出对应的k值;

3)求夹角的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是边长为6的等边三角形,点DE分别是边ABAC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED

求证:平面BCED

的中点为M,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱中,AB=1AC=2ABAC底面ABC.

1)求直线与平面所成角的正弦值;

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的最大值;

2)若对,总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程为,曲线为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线轴围成的区域(不含边界)内,求的取值范围.

查看答案和解析>>

同步练习册答案