精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图所示多面体中,⊥平面为平行四边形,分别为的中点,.
(1)求证:∥平面
(2)若∠=90°,求证;
(3)若∠=120°,求该多面体的体积.

(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)该五面体的体积为 。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
如图所示:已知⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作于E,求证:
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)(如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积

(2)如图,在四边形中,,求四边形旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M.

求证:①AN^BC;  ②平面SAC^平面ANM

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面⊥平面为正方形, ,且分别是线段的中点.

(Ⅰ)求证://平面;  
(Ⅱ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长

查看答案和解析>>

同步练习册答案