精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|ax2-3x+2=0,a∈R},若集合A中至多有一个元素,则实数a的值是(  )
A.a=0B.a≥$\frac{9}{8}$C.a=0或a≥$\frac{9}{8}$D.不确定

分析 因集合A是方程ax2-3x+2=0的解集,欲使集合A={x|ax2-3x+2=0}至多有一个元素,只须此方程有两个相等的实数根或没有实数根,或只有一个实根,下面对a进行讨论求解即可.

解答 解:∵集合A={x|ax2-3x+2=0}至多有一个元素,
分类讨论:
①当a=0时,A={x|-3x+2=0}只有一个元素,符合题意;
②当a≠0时,要A={x|ax2-3x+2=0}至多有一个元素,
则必须方程:ax2-3x+2=0有两个相等的实数根或没有实数根,
∴△≤0,得:9-8a≤0,∴a≥$\frac{9}{8}$,
故选:C.

点评 本小题主要元素与集合关系的判断、不等式的解法等基础知识,考查运算求解能力,考查分类讨论、化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义在(0,+∞)上的函数f(x)满足:?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A={x|2a≤x≤a+3},B={x|x2-6x+5>0}.
(1)若A∩B=∅,求a的取值范围.
(2)是否存在实数a,使得A∪B=R,若存在,求出a的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|-1≤x≤1,-1≤y≤1},
求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左、右焦点分别为F1、F2,P为C的右支上一点,且|PF2|=|F1F2|,则cos∠F1F2P等于(  )
A.$\frac{7}{9}$B.-$\frac{5}{6}$C.-$\frac{7}{18}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=(x+1)(x-a)是偶函数,则f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,集合A={x|x2-3x+2≤0},B={x|x2-2ax+a≤0,a∈R}.
(1)当A∩B=A时,求a的取值范围;
(2)当A∪B=A时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图是一个判断是否存在以a,b,6为三边长的钝角三角形的框图(其中a和b是不超过6的正实数).

(1)请你将判断框中的内容补充完整;
(2)如果a和b是通过分别抛掷两个均匀的般子而得到的,求形成钝角三角形的概率;
(3)如果a和b都是[0,6]中均匀分布的随机数且相互独立,求形成钝角三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分.
求:(1)得分ξ的概率分布
(2)得分ξ的数学期望和方差.

查看答案和解析>>

同步练习册答案