精英家教网 > 高中数学 > 题目详情

【题目】10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有__________种.

【答案】15

【解析】

依题意,首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,再来分配这4个球,按照分类加法计数原理计算可得;

解:有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,故首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,

①4个球分给一人,有3种分法;

②4个球分给两个人,又有两种情况,一人3个一人1个有种分法;两人都是2个有3种分法;

③4个球分给3个人,只有1、1、2这种情况,有3种分法,

按照分类加法计数原理可得一共有种;

故答案为:15

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,极点为,一条封闭的曲线由四段曲线组成:.

1)求该封闭曲线所围成的图形面积;

2)若直线与曲线恰有3个公共点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高三年级学生在线学习情况,统计了2020218-27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.

根据组合图判断,下列结论正确的是(

A.5天在线学习人数的方差大于后5天在线学习人数的方差

B.5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差

C.10天学生在线学习人数的增长比例在逐日增大

D.10天学生在线学习人数在逐日增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求直线和曲线的直角坐标方程;

2)若点坐标为,直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若函数在点处的切线的斜率为,求实数的值;

2)当时,讨论函数的单调性;

3)若关于的不等式在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的所有棱长均为2

(Ⅰ)证明:

(Ⅱ)若平面平面的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.

由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:

黄赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品的需求相互独立.

1)求在未来某连续4个月中,本地区至少有2个月对商品的月需求量低于100万件的概率.

2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品的需求量的限制,并有如下关系:

商品的月需求量(万件)

车间最多正常运行个数

3

4

5

若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系:

商品的月需求量(万件)

未正常生产的一个车间的月维护费(万元)

500

600

试分析并回答该工厂应建设生产线车间多少个?使得商品的月利润为最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5人中任选2人定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

同步练习册答案