精英家教网 > 高中数学 > 题目详情
某企业有三个车间,第一车间有x人,第二车间有300人,第三车间有y人,采用分层抽样的方法抽取容量为45的样本,第一车间被抽到20人,第二车间被抽到10人,问这个企业第一车间和第三车间各有多少人?
考点:分层抽样方法
专题:概率与统计
分析:由已知中第二车间有300人,第二车间被抽到10人,计算出抽样比,进而可得第一车间和第三车间各有多少人.
解答: 解:∵第二车间有300人,第二车间被抽到10人,
故抽样比k=
10
300
=
1
30

∵第一车间被抽到20人,
∴第一车间有20÷
1
30
=600人,
∵第三车间被抽到45-20-10=15人,
∴第一车间有15÷
1
30
=450人.
点评:本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列条件能推出平面α与平面β平行的是(  )
A、α内有无穷多条直线与β平行
B、直线a∥α,a∥β
C、直线b∥α,平面α∥平面β
D、异面直线a,b满足:a?α,直线b?β,且α∥β,b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均不为0的数列{an}满足an+1=
2
an
(n≥1),Sn是其前n项和,若a2a4=2a5,则a3=(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=1与函数f(x)=x2-|x|+a的图象有两个交点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足:对任意x1,x2∈(-∞,0](x1≠x2),都有
x2-x1
f(x2)-f(x1)
>0则(  )
A、f(-5)<f(4)<f(6)
B、f(4)<f(-5)<f(6)
C、f(6)<f(-5)<f(4)
D、f(6)<f(4)<f(-5)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于如图所示的4个几何体,说法正确的是(  )
A、只有②是棱柱
B、只有②④是棱柱
C、只有①②是棱柱
D、只有①②④是棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

记公差不为0的等差数列{an}的前n项和为Sn,S3=9,a3,a5,a8成等比数列.
(Ⅰ) 求数列{an}的通项公式an及Sn
(Ⅱ) 若cn=n2+λan,n=1,2,3,…,问是否存在实数λ,使得数列{cn}为单调递增数列?若存在,请求出λ的取值范围;不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一个几何体的三视图,其中俯视图为正三角形,AB=4,CD=
3
,则该几何体的表面积为(  )
A、6+
3
B、24+
3
C、24+2
3
D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司以每吨10万元的价格销售某种化工产品,每年可售出1000吨,若将该产品每吨的价格上涨x%,则每年的销售量将减少mx%(m>0)
(1)当m=
1
2
时,求销售额的最大值;
(2)若涨价能使销售额增加,求m的取值范围.

查看答案和解析>>

同步练习册答案