精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin+cosg(x)=2sin2.
(1)若α是第一象限角,且f(α)=,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.
(1)(2)
f(x)=sin+cossinxcosxcosxsinxsinx
g(x)=2sin2=1-cos x.
(1)由f(α)=得sin α.又α是第一象限角,所以cos α>0.
从而g(α)=1-cos α=1-=1-.
(2)f(x)≥g(x)等价于sin x≥1-cos x,即sin x+cos x≥1,于是sin
从而2kπ+x≤2kπ+k∈Z,即2kπ≤x≤2kπ+k∈Z,
故使f(x)≥g(x)成立的x的取值集合为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线的斜率之积为,证明:存在定点使
为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,垂直于轴于点,连接 并延长交椭圆于点,记直线的斜率分别为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程=1表示焦点在y轴上的椭圆,则实数k的取值范围是(  )
A.B.(1,+∞)C.(1,2)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P在定圆O的圆内或圆周上,动圆C过点P与定圆O相切,则动圆C的圆心轨迹可能是(  )
A.圆或椭圆或双曲线
B.两条射线或圆或抛物线
C.两条射线或圆或椭圆
D.椭圆或双曲线或抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线与椭圆有相同的焦点,且双曲线的渐近线方程为,则双曲线的方程为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).
(1)求椭圆C的标准方程;
(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C与椭圆=1有共同的焦点F1F2,且离心率互为倒数.若双曲线右支上一点P到右焦点F2的距离为4,则PF2的中点M到坐标原点O的距离等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆mx2+y2=1的焦点在y轴上,长轴长是短轴长的3倍,则m=    .

查看答案和解析>>

同步练习册答案