精英家教网 > 高中数学 > 题目详情
16.下列四个命题,其中正确命题的个数(  )
①若a>|b|,则a2>b2
②若a>b,c>d,则a-c>b-d 
③若a>b,c>d,则ac>bd 
④若a>b>o,则$\frac{c}{a}$>$\frac{c}{b}$.
A.3个B.2个C.1个D.0个

分析 直接由不等式的可乘积性判断①;举例说明②③④错误.

解答 解:①若a>|b|,则a2>b2,①正确;
②若a>b,c>d,则a-c>b-d错误,如3>2,-1>-3,而3-(-1)=4<5=2-(-3); 
③若a>b,c>d,则ac>bd错误,如3>1,-2>-3,而3×(-2)<1×(-3); 
④若a>b>o,则$\frac{1}{a}<\frac{1}{b}$,当c>0时,$\frac{c}{a}$<$\frac{c}{b}$,④错误.
∴正确命题的个数只有1个.
故选:C.

点评 本题考查命题的真假判断与应用,考查了不等式的基本性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.下列四种说法:
①函数y=$\frac{{x}^{2}-x+4}{x-1}(x>1)$的最小值为5;
②等差数列{an}中,a1,a3,a4成等比数列,则公比为$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,则$\frac{2}{a}+\frac{3}{b}$的最小值为5+2$\sqrt{6}$;
④在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,x≥0,y≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积是1.
其中正确的命题为①③④(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,给出了偶函数y=f(x)的局部图象,根据图象信息下列结论正确的是(  )  
A.f(-1)-f(2)>0B.f(1)-f(-2)=0C.f(1)-f(2)<0D.f(-1)+f(2)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax2+bx+c(a>0),对于任意的x1,x2(x1≠x2),则$f(\frac{{{x_1}+{x_2}}}{2})$与$\frac{{f({x_1})+f({x_2})}}{2}$的大小关系是(  )
A.$f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$B.$f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{m}{x}$,且此函数图象过点(1,5),
(1)求实数m的值,并判断函数f(x)的奇偶性;
(2)用单调性的定义证明函数f(x)在[1,2]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知公差不为0的等差数列{an},其前n项和为Sn,若a1,a3,a4成等比数列,则$\frac{{{S_3}-{S_2}}}{{{S_5}-{S_3}}}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四边形ABCD为平行四边形,点A的坐标为(-1,2),点C在第二象限,$\overrightarrow{AB}=({2,2}),且\overrightarrow{AB}与\overrightarrow{AC}$的夹角为$\frac{π}{4},\overrightarrow{AB}•\overrightarrow{AC}$=2.
(I)求点D的坐标;
(II)当m为何值时,$\overrightarrow{AC}+m\overrightarrow{AB}与\overrightarrow{BC}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设$\frac{π}{4}$<α<$\frac{π}{2}$,试比较角α的正弦线、余弦线和正切线的长度,如果$\frac{π}{2}$<α<$\frac{3π}{4}$.上述长度关系又如何?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+(2a-1)x+6+a2有两个零点m,n,且m>2,n>2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案