精英家教网 > 高中数学 > 题目详情

【题目】已知菱形轴上且 ).

Ⅰ)求点轨迹的方程;

Ⅱ)延长交轨迹于点,轨迹在点处的切线与直线交于点,试判断以为圆心,线段为半径的圆与直线的位置关系,并证明你的结论.

【答案】(Ⅰ));(Ⅱ)答案见解析.

【解析】试题分析:

由题意可知对角线垂直平分,由题意结合垂直平分线的性质可得点到直线的距离与点的距离相等,结合几何关系可知点轨迹方程为).

Ⅱ)设联立直线AD是方程与抛物线方程可得,由题意结合韦达定理可得,利用导数研究切线方程可得在点处的切线方程为:,且直线的方程为,据此可得交点坐标,计算可得点到直线的距离,则圆与直线相切.

试题解析:

Ⅰ)因为是菱形,所以对角线垂直平分,

因为轴上,所以与直线垂直,

所以点到直线的距离与点的距离相等,

所以点轨迹为抛物线(不包含顶点),

其轨迹方程为).

Ⅱ)设

设直线的方程为,联立可得:

所以

因为菱形,所以,所以

所以,所以

所以,所以

可得

所以在点处的切线方程的斜率为

则切线的方程为:,即……

因为,所以

中点,所以直线的方程为

联立①②可得,即点,又,所以

所以,点到直线的距离

所以圆与直线相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义域为R上的奇函数,当x0时,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意实数xy恒有,当x>0时,f(x)<0,且.

(1)判断的奇偶性;

(2)在区间[-3,3]上的最大值;

(3)对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若对任意均有成立,求实数的取值范围;

(2)设直线与曲线和曲线相切,切点分别为,其中.

①求证:

②当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若质地均匀的六面体玩具各面分别标有数字1,2,3,4,5,6.抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.抛掷该玩具一次,记事件A=“向上的面标记的数字是完全平方数(即能写出整数的平方形式的数,如9=32,9是完全平方数)

(1)甲、乙二人利用该玩具进行游戏,并规定:①甲抛掷一次,若事件A发生,则向上一面的点数的6倍为甲的得分;若事件A不发生,则甲得0分;②乙抛掷一次,将向上的一面对应的数字作为乙的得分。现甲、乙二人各抛掷该玩具一次,分别求二人得分的期望;

(2)抛掷该玩具一次,记事件B=“向上一面的点数不超过,若事件AB相互独立,试求出所有的整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,三个内角所对的边分别为,满足.

(1) 求角的大小;

(2),求的值.(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了24亩,所得亩产数据(单位:千克)如下:

品种A:357359367368375388392399400405412414415421423423427430430434443445451454

品种B363371374383385386391392394395397397400401401403406407410412415416422430

1)画出茎叶图.

2)用茎叶图处理现有的数据,有什么优点?

3)通过观察茎叶图,对品种AB的亩产量及其稳定性进行比较,写出统计结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,,且当.

1)证明:是奇函数;

2)证明:上是减函数;

3)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,ADDCABBCQD⊥平面ABCDPAQDPA=1,ADABQD=2.

(1)求证:平面PAB⊥平面QBC

(2)求该组合体QPABCD的体积.

查看答案和解析>>

同步练习册答案