精英家教网 > 高中数学 > 题目详情
11.直线$\sqrt{3}$x+3y+1=0的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 求出直线的斜率,即可求出直线的倾斜角.

解答 解:直线$\sqrt{3}$x+3y+1=0的斜率是-$\frac{\sqrt{3}}{3}$,倾斜角是$\frac{5π}{6}$,
故选:D.

点评 本题考查了直线的倾斜角与斜率的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某中学号召学生在今年暑假期间至少参加一次社会公益活动(以下简称活动),该校合唱团共有100名学生,他们参加活动的次数统计如图所示;
(1)求合唱团学生参加活动的人均次数;
(2)从合唱团中任选两名学生,用ξ表示这两人参加活动次数的和,求ξ的分布列.(结果用最简分数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知方程x1+x2+x3+x4=100,求:
(1)这个方程的正整数解的组数;
(2)这个方程的非负整数解的组数;
(3)满足xi≥i,(i=1,2,3,4)的整数解的组数.
(注:不要求算出具体值,只列出式子即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设抛物线y2=12x的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,则|AF|+|BF|=(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设各项为正数的数列{an}的前n和为Sn,且Sn满足:${S_n}^2-({n^2}+n-3){S_n}-3({n^2}+n)=0,n∈{N_+}$.等比数列{bn}满足:${log_2}{b_n}+\frac{1}{2}{a_n}=0$.
(Ⅰ)求数列{an},{bn}的通项公式;      
(Ⅱ)设cn=an•bn,求数列{cn}的前n项的和Tn
(Ⅲ) 证明:对一切正整数n,有$\frac{1}{{{a_1}({a_1}+1)}}+\frac{1}{{{a_2}({a_2}+1)}}+…+\frac{1}{{{a_n}({a_n}+1)}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为$\frac{3}{4}$,得到乙公司和丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记ξ为该毕业生得到面试的公司个数,若P(ξ=0)=$\frac{1}{16}$
(Ⅰ)求p的值:
(Ⅱ)求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A∪B∪C={a,b,c,d,e},A∩B={a,b,c},c∈A∩B∩C,则符合上述条件的{A,B,C}共有100组.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)满足关系式f(x+2)=-2x+5,则f(5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某射手射击一次所得环数X的分布列如表:
X78910
P0.10.40.30.2
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(1)求ξ>7的概率;
(2)求ξ的分布列.

查看答案和解析>>

同步练习册答案