精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直三棱柱中, ,点分别是的中点.

(1)求证: ∥平面

(2)若,求证: .

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)先根据平面几何知识证明四边形是平行四边形,得.再根据线面平行判定定理得结论(2)先根据直三棱柱性质得,再根据等腰三角形性质得,由线面垂直判定定理得侧面.即得.再由已知,证得平面,即得结论

试题解析:证明:(1)因为是直三棱柱,所以,且

又点分别是的中点,所以,且

所以四边形是平行四边形,从而

平面 平面,所以∥面

(2)因为是直三棱柱,所以底面,而侧面

所以侧面底面

,且的中点,所以

则由侧面底面,侧面底面

,且底面,得侧面

侧面,所以

平面,且

所以平面

平面,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是矩形,侧棱底面 分别是的中点, .

(Ⅰ)求证: 平面

(Ⅱ)求证: 平面

(Ⅲ)若 ,求三棱锥的体积..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中曲线的方程是上的动点满足为极点),点的轨迹为曲线以极点为原点极轴为轴的非负半轴建立平面直角坐标系已知直线的参数方程是,( 为参数).

(Ⅰ)求曲线直角坐标方程与直线的普通方程

(Ⅱ)求点到直线的距离的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市初三毕业生参加中考要进行体育测试,某实验中学初三(8)班的一次体育测试成绩的茎叶图和频率分布直方图都受到不同程度的涂黑,但可见部分如图,据此解答如下问题.

(Ⅰ)求全班人数及中位数,并重新画出频率直方图;

(Ⅱ)若要从分数在之间的成绩中任取两个学生成绩分析学生得分情况,在抽取的学生中,求至少有一个分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足,其中,且 为常数.

(1)若是等差数列,且公差,求的值;

(2)若,且存在,使得对任意的都成立,求的最小值;

(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

1)设讨论的单调性;

2)若函数内存在零点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A, B, C的对边分别为a, b, c,.

求角C的大小;

Ⅱ)设角A的平分线交BCD,且AD=,若b=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图,在三棱柱中,平面平面,且均为正三角形.

(1)在上找一点,使得平面,并说明理由.

(2)若的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届山西省太原十二中高三上学期1月月考】运动员甲在最近比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出行了污渍,导致这两个数字无法辨认,但统计员记得除掉污渍处的数字不影响整体中位数,且这六个数据的平均值为.

1)求污渍处的数字;

2)篮球运动员乙在最近的比赛中所得分数为.试分别以各自场比赛得分的平均数与方差来分析这两名篮球运动员的发挥水平.

查看答案和解析>>

同步练习册答案