精英家教网 > 高中数学 > 题目详情
17.如图,梯形A1B1C1D1是一平面图形ABCD的直观图(斜二测),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,则原平面图形ABCD的面积是(  )
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

分析 如图,根据直观图画法的规则,确定原平面图形四边形ABCD的形状,求出底边边长,上底边边长,以及高,然后求出面积.

解答 解:如图,根据直观图画法的规则,
直观图中A1D1∥O′y′,A1D1=1,⇒原图中AD∥Oy,
从而得出AD⊥DC,且AD=2A1D1=2,
直观图中A1B1∥C1D1,A1B1=$\frac{3}{4}$C1D1=3,⇒原图中AB∥CD,AB=$\frac{3}{4}$CD=3,
即四边形ABCD上底和下底边长分别为3,4,高为2,如图.
故其面积S=$\frac{1}{2}$(3+4)×2=7.
故选:B.

点评 本题考查平面图形的直观图,考查计算能力,作图能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某名学生默写英语单词“bookkeeper(会计)”,他记得这个单词是由3个“e”,2个“o”,2个“k”,b,p,r各一个组成,2个“o”相邻,3个“e”恰有两个相邻,o,e都不在首位,他按此条件任意写出一个字母组合,则他写对这个单词的概率为(  )
A.$\frac{1}{9600}$B.$\frac{1}{18000}$C.$\frac{1}{4500}$D.$\frac{1}{10800}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在${(\sqrt{x}+\frac{a}{x})^6}(a>0)$的展开式中常数项的系数是60,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某四棱锥的三视图如图所示,该四棱锥的表面积是(  )
A.32B.16+16$\sqrt{2}$C.48D.16+32$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是(  )
A.不存在${x_0}∈R,{2^{x_0}}>0$B.?x∈R,2x>0
C.$?{x_0}∈R,{2^{x_0}}≥0$.D.?x∈R,2x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)为R上的偶函数,当x>0时,f(x)=log6x,则f(-4)+f(9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=sin(2x+$\frac{π}{3}$)(  )
A.图象向右平移$\frac{π}{3}$个单位长度得到y=sin2x图象
B.图象关于点($\frac{π}{6}$,0)对称
C.图象关于直线x=-$\frac{π}{12}$对称
D.在区间[-$\frac{5π}{12}$,$\frac{π}{12}$]单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接受的快递的数量的中位数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3xf(x)+x2f(x)<0,则不等式(x+2016)3f(x+2016)+27f(-3)>0的解集(  )
A.(-2018,-2016)B.(-∞,-2016)C.(-2019,-2016)D.(-∞,-2019)

查看答案和解析>>

同步练习册答案