精英家教网 > 高中数学 > 题目详情
直线l和△ABC的两边AB和BC同时垂直,则直线l和AC的位置关系是(  )
A、垂直B、平行
C、相交不垂直D、无法确定
考点:直线与平面垂直的性质
专题:空间位置关系与距离
分析:判断仔细与平面垂直,利用仔细与平面垂直的性质定理推出结果即可.
解答: 解:由于AB和BC是相交直线,所以l⊥平面ABC.又AC?平面ABC,所以l⊥AC.
故选A.
点评:本题考查仔细与平面垂直的判定定理的应用,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且|
OA
+
OB
|≥|
AB
|
,那么实数a的取值范围是(  )
A、(-
2
,-1]∪[1,
2
)
B、(-
2
,0)∪(0,
2
)
C、(-
2
,-1]∪(0,
2
)
D、(-
2
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3,2),则
a
沿着
b
=(1,-2)平移后的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2,使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数:
f(x)=
3
2x-1
;         ②f(x)=
x2-1
;     ③f(x)=-
1
2
sin(πx+
1
3
)+1

f(x)=
1+lnx
x
;        ⑤f(x)=(
1
e
)x+4

其中在区间[1,+∞)上通道宽度可以为1的函数有
 
 (写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
4x+1
2x
的图象(  )
A、关于原点对称
B、关于直线y=x对称
C、关于x轴对称
D、关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
cosπx,x>0
f(x+1),x<0
,则f(-
4
3
)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的解析式
(1)设函数y=g(x)是定义在R上的函数,对任意实数x,g(1-x)=x2-3x+3,求函数y=g(x)的解析式;
(2)已知定义在R上的函数y=f(x)是偶函数,且x≥0时,f(x)=ln(x2-2x+2),求函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=3x+3-x(x<0)的最小值为2;
②在数列{an}中,a1=1,Sn是前n项和,且满足Sn+1=
1
2
Sn+2,则数列{an}是等比数列;
③若f(x+2)+
1
f(x)
=0,则函数y=f(x)是以4为周期的周期函数;
④若函数f(x)=x3+ax2+2的图象关于点(1,0)对称,则a的值为-3,
则正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z都是正实数,且x+2y+z=1,则
1
x+y
+
2
y+z
的最小值为(  )
A、2
B、3
C、3+2
2
D、2+2
2

查看答案和解析>>

同步练习册答案