精英家教网 > 高中数学 > 题目详情

如图所示,已知正四棱锥S—ABCD侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成角的大小为                         (    )

A.90°                                   B.60°

C.45°                                   D.30°


解析:

平移SC到,运用余弦定理可算得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知正四棱柱ABCD-A1B1C1D1的底面边长为1,点E在棱AA1上,A1C∥平面EBD,截面EBD的面积为
2
2

(1)A1C与底面ABCD所成角的大小;
(2)若AC与BD的交点为M,点T在CC1上,且MT⊥BE,求MT的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正四棱柱ABCDA1B1C1D1 AB=1,AA1=2,点ECC1中点,点FBD1中点.

(1)证明EFBD1CC1的公垂线;

(2)求点D1到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高二上期中考试理科数学试卷(解析版) 题型:选择题

如图所示,已知正四棱锥侧棱长为,底面边长为的中点,则异面直线所成角的大小为(   )

A.       B.       C.      D.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正四棱柱ABCD―A1B1C1D1的底面边长为4,AA1=6,Q为BBl的中点,PDDl,MAlB1,N∈ClD1,A1M=1,D1N=3.

(1)当P为DD1的中点时,求二面角M―PN―D1的大小;

(2)在DD1上是否存在点P,使QD1⊥PMN面?若存在,求出点P的位置;若不存在,说明理由;

(3)若P为DD1的中点,求三棱锥Q―PMN的体积.

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学模拟冲刺试卷(一)(解析版) 题型:解答题

如图所示,已知正四棱柱ABCD-A1B1C1D1的底面边长为1,点E在棱AA1上,A1C∥平面EBD,截面EBD的面积为
(1)A1C与底面ABCD所成角的大小;
(2)若AC与BD的交点为M,点T在CC1上,且MT⊥BE,求MT的长.

查看答案和解析>>

同步练习册答案