精英家教网 > 高中数学 > 题目详情

将参数方程数学公式(θ为参数,θ∈R)化为普通方程,所得方程是________.

y=-x2+3(
分析:将参数方程化为普通方程,就是将其中的参数消掉,可以借助于三角函数的平方关系,因此想到把①两边平方,然后和②相加即可,同时求出x的范围.
解答:由
因为θ∈R,所以-1≤sinθ≤1,则
由①两边平方得:x2=2sin2θ③
由②得y-1=2cos2θ④
③+④得:x2+y-1=2,即y=-x2+3().
故答案为y=-x2+3().
点评:本题考查了化参数方程为普通方程,解答此类问题的关键是如何把题目中的参数消掉,常用的方法有代入法,加减消元法等,同时注意消参后变量的范围限制,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将参数方程数学公式(k为参数)化成普通方程是________.

查看答案和解析>>

科目:高中数学 来源:2010年陕西省西安市西工大附中高考数学八模试卷(文科)(解析版) 题型:解答题

(1)将参数方程(e为参数)化为普通方程是    
(2)不等式|2x-1|+|2x-3|≥4的解集是    

查看答案和解析>>

科目:高中数学 来源:0127 模拟题 题型:填空题

(选做题)将参数方程(e为参数)化为普通方程是(    )。

查看答案和解析>>

同步练习册答案