精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(3)的值等于-1.

分析 由函数性质得f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,
∴f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-(0+1)=-1.
故答案为:-1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.解不等式x-3x2>-2的解集是(-$\frac{2}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,抛物线x2=4y在点$M(t,\;\frac{1}{4}{t^2})\;(t>0)$处的切线与x轴相交于点N,O、F分别为该抛物线的顶点、焦点.
(1)当t=2时,求切线MN的方程;
(2)当t∈(0,1]时,求四边形OFMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)满足:对于其定义域D内的任何一个自变量x0,都有函数值f(x0)∈D,则称函数f(x)在D上封闭.
(1)若下列函数的定义域为D=(0,1),试判断其中哪些在D上封闭,并说明理由.f1(x)=2x-1,f2(x)=2x-1.
(2)若函数g(x)=$\frac{5x-a}{x+2}$的定义域为(1,2),是否存在实数a,使得g(x)在其定义域(1,2)上封闭?若存在,求出所有a的值,并给出证明:若不存在,请说明理由.
(3)已知函数f(x)在其定义域D上封闭,且单调递增.若x0∈D且f(f(x0))=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记不等式2|x-1|+x-1≤1的解集为M,不等式16x2-8x+1≤4的解集为N,求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是定义在[0,+∞)上单调递增的函数,则满足$f({2x-1})<f({\frac{1}{3}})$的x取值范围是(  )
A.$({\frac{1}{2}\;,\;\;\frac{2}{3}})$B.$({-∞\;,\;\;\frac{2}{3}})$C.$[{\frac{1}{2}\;,\;\;\frac{2}{3}})$D.$({-∞\;,\;\;\frac{2}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x,y∈R,则“x>y”是“x2>y2”的既不充分也不必要条件.(从“充要、充分不必要不充分、必要不充分、既不充分也不必要”四种关系中选择一个填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点P(2,4)关于直线x+y+1=0的对称点的坐标为(  )
A.(5,-3)B.(3,-5)C.(-5,3)D.(-5,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈R,log2(3x+1)≤0,则(  )
A.¬p:?x∈R,log2(3x+1)>0B.¬p:?x∈R,log2(3x+1)>0
C.¬p:?x∈R,log2(3x+1)≤0D.¬p:?x∈R,log2(3x+1)≤0

查看答案和解析>>

同步练习册答案