【题目】已知函数, .
(Ⅰ)求证:当时, ;
(Ⅱ)若函数在(1,+∞)上有唯一零点,求实数的取值范围.
【答案】(Ⅰ)见解析(Ⅱ)(0,1)
【解析】试题分析:(Ⅰ)求导,得,分析单调性得当时, 即得证;(Ⅱ) 对t进行讨论①, 在[1,+∞)上是增函数,所以当时, ,所以在(1,+∞)上没有零点,②若, 在[1,+∞)上是减函数,所以当时, ,所以在(1,+∞)上没有零点,③若0<t<1时分析单调性借助于第一问,找到,则当时,即成立;取,则当时, ,即,说明存在,使得,即存在唯一零点;
试题解析:(Ⅰ)由,得.
当变化时, 与的变化情况如下表:
x | (0,4) | 4 | (4,+∞) |
+ | 0 | - | |
所以当时, ;
(Ⅱ)
①若,则当时, ,所以在[1,+∞)上是增函数,
所以当时, ,所以在(1,+∞)上没有零点,所以不满足条件.
②若,则当时, ,所以在[1,+∞)上是减函数,
所以当时, ,所以在(1,+∞)上没有零点,所以不满足条件.
③若0<t<1,则由,得
当变化时, 与的变化情况如下表:
记,则当时,即成立;
由(Ⅰ)知当时, ,即成立,所以取,则当时, 且,从而 ,即,这说明存在,使得,
结合上表可知此时函数在(1,+∞)上有唯一零点,所以0<t<1满足条件.
综上,实数的取值范围为(0,1).
科目:高中数学 来源: 题型:
【题目】围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)
(1)将表示为的函数;
(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 5 | 18 | 19 | 6 | 1 |
图1:乙套设备的样本的频率分布直方图
(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;
(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直线BC与平面ABF所成角的大小,并求线段PH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=,现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中真命题有___________________(写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com