精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

)求证:当时,

)若函数在(1+∞)上有唯一零点,求实数的取值范围.

【答案】)见解析((01)

【解析】试题分析:(Ⅰ)求导,得,分析单调性得当时, 即得证;(Ⅱt进行讨论①[1,+∞)上是增函数,所以当时, ,所以(1,+∞)上没有零点,②若[1,+∞)上是减函数,所以当时, ,所以(1,+∞)上没有零点,③若0<t<1时分析单调性借助于第一问,找到,则当,即成立;取,则当时, ,即,说明存在,使得,即存在唯一零点;

试题解析:(Ⅰ)由,得

变化时, 的变化情况如下表:

x

(0,4)

4

(4,+∞)

+

0

-

所以当时,

①若,则当时, ,所以[1,+∞)上是增函数,

所以当时, ,所以(1,+∞)上没有零点,所以不满足条件.

②若,则当时, ,所以[1,+∞)上是减函数,

所以当时, ,所以(1,+∞)上没有零点,所以不满足条件.

③若0<t<1,则由,得

变化时, 的变化情况如下表:

,则当,即成立;

由(Ⅰ)知当时, ,即成立,所以取,则当时, ,从而 ,即,这说明存在,使得

结合上表可知此时函数(1,+∞)上有唯一零点,所以0<t<1满足条件.

综上,实数的取值范围为(0,1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有一个正方形网格,其中每个最小正方形的边长都为5 cm.现用直径为2 cm的硬币投掷到此网格上,求硬币落下后与格线有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)

1)将表示为的函数;

2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

5

18

19

6

1

图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;

(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面 为线段上一点, 的中点.

(1)证明:

(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方形AMDE的边长为2BC分别为AMMD的中点在五棱锥PABCDEF为棱PE的中点平面ABF与棱PDPC分别交于点GH.

(1)求证ABFG

(2)PA⊥底面ABCDEPAAE.求直线BC与平面ABF所成角的大小并求线段PH的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2xgx)=x2ax(其中aR.对于不相等的实数x1x2,设mn,现有如下命题:

对于任意不相等的实数x1x2,都有m0

对于任意的a及任意不相等的实数x1x2,都有n0

对于任意的a,存在不相等的实数x1x2,使得mn

对于任意的a,存在不相等的实数x1x2,使得m=-n.

其中真命题有___________________(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

(1)若函数上的极小值不大于,求的取值范围.

(2)设,证明: 上的最小值为定值.

查看答案和解析>>

同步练习册答案