精英家教网 > 高中数学 > 题目详情
5.如图,在直角坐标系xOy中,锐角α的顶点是原点,始边与x轴非负半轴重合,终边交单位圆于点M(x1,y1),将角α的终边按逆时针方向旋转$\frac{π}{3}$,交单位圆于点M(x2,y2).记f(α)=y1+y2
(I)求函数f(α)的值域;
(Ⅱ)在△ABC中,角A,B,C所对的边是a,b,c.若f(C)=$\sqrt{3}$,c=7,sinA+sinB=$\frac{13\sqrt{3}}{14}$,求△ABC的面积.

分析 (I)根据三角函数的定义求出函数f(α)的表达式,即可求出处函数的值域;
(Ⅱ)由f(C)=$\sqrt{3}$,可得:sin(C+$\frac{π}{6}$)=1,结合范围0<C<π,解得C=$\frac{π}{3}$,由条件c=7,sinA+sinB=$\frac{13\sqrt{3}}{14}$,结合正弦定理可得a+b=13,由余弦定理可得ab=40,利用三角形面积公式即可得解.

解答 解:(Ⅰ)∵由三角函数定义知,y1=sinα,y2=sin(α+$\frac{π}{3}$),
∴f(α)=y1+y2=sinα+sin(α+$\frac{π}{3}$)=$\sqrt{3}$sin(α+$\frac{π}{6}$),
∵角α为锐角,
∴$\frac{π}{6}$<α+$\frac{π}{6}$<$\frac{2π}{3}$,
∴$\frac{1}{2}$<sin(α+$\frac{π}{6}$)≤1,
∴$\frac{\sqrt{3}}{2}$<$\sqrt{3}$sin(α+$\frac{π}{6}$)≤$\sqrt{3}$,
则f(α)的取值范围是($\frac{\sqrt{3}}{2}$,$\sqrt{3}$];
(Ⅱ)∵f(C)=$\sqrt{3}$sin(C+$\frac{π}{6}$)=$\sqrt{3}$,可得:sin(C+$\frac{π}{6}$)=1,
∵0<C<π,$\frac{π}{6}$<C+$\frac{π}{6}$<$\frac{7π}{6}$,解得:C+$\frac{π}{6}$=$\frac{π}{2}$,即C=$\frac{π}{3}$.
∵c=7,sinA+sinB=$\frac{13\sqrt{3}}{14}$,
∴由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{7}{\frac{\sqrt{3}}{2}}$,可得:a+b=13,
∴由余弦定理可得:49=a2+b2-ab=(a+b)2-3ab=169-3ab,解得:ab=40,
∴${S}_{△ABC}=\frac{1}{2}$absinC=$\frac{1}{2}×40×\frac{\sqrt{3}}{2}$=10$\sqrt{3}$.

点评 本题主要考查三角函数的定义以及正弦定理,余弦定理,三角形面积公式的应用,考查了正弦函数的图象和性质,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)的图象与曲线y=x2-2x+3关于y轴对称,则f(x)=x2+2x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则使向量$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角是锐角的实数k的取值范围是($\frac{5-\sqrt{21}}{2}$,1)∪(1,$\frac{5+\sqrt{21}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线x2=4y+8的焦点到顶点的距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+x-2,g(x)=x3+x2+(1-a)x-1.
(1)若曲线y=f(x)在点P0处的切线l平行于直线4x-y-1=0,且点P0在第三象限,求点P0的坐标;
(2)若对任意的x∈R,都有g(x)>f(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.式子(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+lg20+log10025=$\frac{37}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.化简log2$\sqrt{2\sqrt{2\sqrt{2\sqrt{2}…\sqrt{2}}}}$(总共有2015个2)的结果为(  )
A.$\frac{2014}{2015}$B.$\frac{{2}^{2015}-1}{{2}^{2015}}$C.$\frac{{2}^{2014}-1}{{2}^{2014}}$D.$\frac{{2}^{2016}-1}{{2}^{2016}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将棱长为2的正四面体木块切削成一个体积最大的球,则该球的体积是(  )
A.$\frac{\sqrt{6}π}{27}$B.$\sqrt{6}$πC.$\frac{\sqrt{3}}{2}$πD.$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知奇函数f(x)对任意正实数x1,x2(x1≠x2),恒有$\frac{{f(x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则一定正确的是(  )
A.f(4)>f(-6)B.f(-4)<f(-6)C.f(-4)>f(-6)D.f(4)<f(-6)

查看答案和解析>>

同步练习册答案