精英家教网 > 高中数学 > 题目详情

【题目】某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:

1

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根据以上数据,绘制了散点图.

1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由).

2)根据(1)的判断结果及表1中的数据,建立关于的回归方程,并预测活动推出第8天使用扫码支付的人次.

3)推广期结束后,为更好的服务乘客,车队随机调查了100人次的乘车支付方式,得到如下结果:

2

支付方式

现金

乘车卡

扫码

人次

10

60

30

已知该线路公交车票价2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据调査结果发现:使用扫码支付的乘客中有5名乘客享受7折优惠,有10名乘客享受8折优惠,有15名乘客享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.

参考数据:

62.14

1.54

2535

50.12

3.47

其中.

参考公式:

对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.

【答案】1适宜作为扫码支付的人数关子活动推出天数的回归方程类型;(2)见解析(3(元).

【解析】

1)由于散点图呈指数型增长,则更适宜;

2)将非线性的回归方程,利用对数的运算性质转化为线性的,再利用最小二乘法求解即可得出回归方程,并代值,即可得出第8天使用扫码支付的人次;

3)分别计算出每个月三种支付方式的收入,即可得出该车队一辆车一年的总收入.

1)根据散点图判断,适宜作为扫码支付的人数关子活动推出天数的回归方程类型.

2)∵,两边同时取常用对数得:

,∴,∵

代入,得:,∴

代入上式:∴

∴活动推出第8天使用扫码支付的人次为

关于的回归方程为,,活动推出第8天使用扫码支付的人次为3470.

3)由题意可知:一个月中使用现金的乘客有1000人,共收入元;使用乘车卡的乘客有6000人,共收入元;

使用扫码支付的乘客有3000人,

其中:享受7折优惠的有500人,共收入元,

享受8折优惠的有1000人,共收入元,

享受9折优惠的有1500人,共收入元,

所以,一辆车一个月的收入为:(元),

所以,一辆车一年的收入为:(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:

(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;

(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;

(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求的单调区间;

)若的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为加强对销售员的考核与管理,从销售部门随机抽取了2019年度某一销售小组的月均销售额,该小组各组员2019年度的月均销售额(单位:万元)分别为:3.353.353.383.413.433.443.463.483.513.543.563.563.573.593.603.643.643.673.703.70.

(Ⅰ)根据公司人力资源部门的要求,若月均销售额超过3.52万元的组员不低于全组人数的,则对该销售小组给予奖励,否则不予奖励.试判断该公司是否需要对抽取的销售小组发放奖励;

(Ⅱ)在该销售小组中,已知月均销售额最高的5名销售员中有1名的月均销售额造假.为找出月均销售额造假的组员,现决定请专业机构对这5名销售员的月均销售额逐一进行审核,直到能确定出造假组员为止.设审核次数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.已知函数.

1)当时,求的极值;

2)若在区间上有且只有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验.

方式二:混合检验,将其中份血液样本分别取样混合在一起检验,若不是阳性,检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.现取其中份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求关于的函数关系式

2)若与干扰素计量相关,其中是不同的正实数,满足都有成立.

(ⅰ)求证:数列为等比数列;

(ⅱ)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称柯西函数,则下列函数:

;②;③;④.其中是柯西函数的为(

A.①②B.③④C.①③D.②④

查看答案和解析>>

同步练习册答案