【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图. ①求频率分布直方图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.
【答案】
(1)解:①由第四组的频率为1﹣(0.006+0.024+0.006)×25=0.1,
得25a=0.1,
解得a=0.004;
②去年该居民区PM2.5年平均浓度为:
12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1=42.5(微克/立方米);
因为42.5>35,
所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,
故该居民区的环境需要改进
(2)解:由题意可得:
PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,
X的可能取值为0,1,2,3;
P(X=k)= (1﹣0.9)3﹣k0.9k,
可得P(X=0)=0.001,P(X=1)=0.027,
P(X=2)=0.243,P(X=3)=0.729;
X的分布列为:
X | 0 | 1 | 2 | 3 |
P | 0.001 | 0.027 | 0.243 | 0.729 |
【解析】(1)(1)①估计频率和为1求出a的值;②利用频率分布直方图求出年平均浓度,与35比较即可得出结论;(2)由题意得PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,X的可能取值为0,1,2,3;计算P(X=k)= 0.13﹣k0.9k,写出分布列.
【考点精析】掌握频率分布直方图和离散型随机变量及其分布列是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】已知双曲线C: ﹣ =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C是圆O上的三个点,CO的延长线与线段BA的延长线交于圆外一点.若 ,其中m,n∈R.则m+n的取值范围是( )
A.(0,1)
B.(﹣1,0)
C.(1,+∞)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+3x,其中a>0.
(Ⅰ)当a=2时,求不等式f(x)≥3x+2的解集;
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D为CC1中点.
(1)求证:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的一个侧面PAD为等边三角形,且平面PAD⊥平面ABCD,四边形ABCD是平行四边形,AD=2,AB=4,BD=2
(1)求证;PA⊥BD
(2)求二面角D﹣BC﹣P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣k)ex+k,k∈Z,e=2.71828…为自然对数的底数.
(1)当k=0时,求函数f(x)的单调区间;
(2)若当x∈(0,+∞)时,不等式f(x)+5>0恒成立,求k的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com