【题目】已知函数.
(1)当,且是上的增函数,求实数的取值范围;
(2)当,且对任意实数,关于的方程总有三个不相等的实数根,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在数列中, , , ,其中.
⑴ 求证:数列为等差数列;
⑵ 设, ,数列的前项和为,若当且为偶数时, 恒成立,求实数的取值范围;
⑶ 设数列的前项的和为,试求数列的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为,传输信息为,其中, , 运算规则为: , , , .例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( )
A. 01100 B. 11010 C. 10110 D. 11000
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:
(1)CD⊥AE;
(2)PD⊥平面ABE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相.某大型超市进行扶贫工作,按计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,售价为每公斤24元,未售完的荔枝降价处理,以每公斤16元的价格当天全部处理完.根据往年情况,每天需求量与当天平均气温有关.如果平均气温不低于25摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温低于15摄氏度,需求量为公斤.为了确定6月1日到30日的订购数量,统计了前三年6月1日到30日各天的平均气温数据,得到如图所示的频数分布表:
平均气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);
(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com