精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是

(1)命题“”的否定是“”;

(2)l为直线,为两个不同的平面,若,则

(3)给定命题p,q,若“为真命题”,则是假命题;

(4)“”是“”的充分不必要条件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

【答案】D

【解析】

逐个命题进行判定,对于(1)结合全称命题的否定方法可以判定;对于(2)要考虑全面直线与平面的位置关系;对于(3)根据复合命题的真假进行判断;对于(4)利用可以判定.

对于(1)“”的否定就是“”,正确;

对于(2)直线可能在平面内,所以不能得出,故不正确;

对于(3)若“为真命题”则均为真命题,故是假命题,正确;

对于(4)因为时可得,反之不能得出,故“”是“”的必要不充分条件,故不正确.故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:

如果A、B两个节目要相邻,且都不排在第3号位置,则节目单上不同的排序方式有(   )种

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,EF分别为棱VAVC的中点.

(1)求证:EF平面ABCD

(2)求证:平面VBD平面BEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,

①若曲线与直线相切,求c的值;

②若曲线与直线有公共点,求c的取值范围.

(2)当时,不等式对于任意正实数x恒成立,当c取得最大值时,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–10),

F210).过F2x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=

1)求椭圆C的标准方程;

2)求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月,来自“一带一路”沿线的国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.为发展业务,某调研组对两个公司的扫码支付准备从国内 个人口超过万的超大城市和个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.

(I)求的值;

(Ⅱ)若一次抽取个城市,则:

①假设取出小城市的个数为,求的分布列和期望;

②取出个城市是同一类城市求全为超大城市的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以(单位:度)分组的频率分布直方图如下图:

若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:

月平均用电量(度)

使用峰谷电价的户数

3

9

13

7

2

1

(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);

(2)()将“一般用户”和“大用户”的户数填入下面的列联表:

一般用户

大用户

使用峰谷电价的用户

不使用峰谷电价的用户

()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?

0.025

0.010

0.001

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是直角梯形,其中.点的中点,将沿折起如图,使得平面.点分别是线段的中点.

(1)求证:

(2)求三棱锥的体积

查看答案和解析>>

同步练习册答案