¶¨Ò壺ÈôÊýÁÐ{An}Âú×ãAn+1=An2£¬Ôò³ÆÊýÁÐ{An}Ϊ¡°Æ½·½ÊýÁС±£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬µã£¨an£¬an+1£©ÔÚº¯Êýf£¨x£©=2x2+2xµÄͼÏóÉÏ£¬ÆäÖÐnΪÕýÕûÊý£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{2an+1}ÊÇ¡°Æ½·½ÊýÁС±£¬ÇÒÊýÁÐ{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ®
£¨2£©É裨1£©ÖС°Æ½·½ÊýÁС±µÄÇ°nÏîÖ®»ýΪTn£¬¼´Tn=£¨2a1+1£©£¨2a2+1£©¡­£¨2an+1£©£¬ÇóÊýÁÐ{an}µÄͨÏî¼°Tn¹ØÓÚnµÄ±í´ïʽ£®
£¨3£©¼Çbn=log2an+1Tn£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîÖ®ºÍSn£¬²¢ÇóʹSn£¾4020µÄnµÄ×îСֵ£®
·ÖÎö£º£¨1£©ÓÉÌõ¼þan+1=2an2+2an£¬µÃ2an+1+1=4an2+4an+1=£¨2an+1£©2£¬¶øÓÉlgbn+1=2lgbn£®¿ÉµÃ
lg(2an+1+1)
lg(2an+1)
=2£®£¬´Ó¶ø¿ÉµÃ{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ®
£¨2£©ÓÉ£¨I£©¿ÉÇólgan£¬½ø¶ø¿ÉÇóan£¬ÀûÓöÔÊýµÄÔËËãÐÔÖÊ¿ÉÇólgTn£¬½ø¶ø¿ÉÇóTn
£¨3£©ÓÉ£¨2£©¿ÉÇóbn=
lgTn
lg(2an+1)
£¬Çó³öSn´úÈë²»µÈʽSn£¾4020¿ÉÇón
½â´ð£º½â£º£¨1£©ÓÉÌõ¼þan+1=2an2+2an£¬µÃ2an+1+1=4an2+4an+1=£¨2an+1£©2£®¡à{bn}ÊÇ¡°Æ½·½ÊýÁС±£®
¡àlgbn+1=2lgbn£®¡ßlg£¨2a1+1£©=lg5¡Ù0£¬¡à
lg(2an+1+1)
lg(2an+1)
=2£®¡à{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ®
£¨2£©¡ßlg£¨2a1+1£©=lg5£¬¡àlg£¨2an+1£©=2n-1?lg5£¬
¡à2an+1=52n-1£¬¡àan=
1
2
£¨52n-1-1£©
¡ßlgTn=lg£¨2a1+1£©+lg£¨2a2+1£©+¡­+lg£¨2an+1£©=
lg5?(1-2n)
1-2
=£¨2n-1£©lg5£®
¡àTn=5(-1+2n)
£¨3£©bn=
lgTn
lg(2an+1)
=
2n-1
2n-1

¡àSn=2n-2+
1
2n
£¾4020
¡ànµÄ×îСֵΪ2011£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÀûÓÃÊýÁеĵÝÍƹ«Ê½Çó½âÊýÁеÄͨÏʽ£¬¶ÔÊýµÄÔËËãÐÔÖʵÄÓ¦Ó㬷Ö×éÇóºÍµÄÓ¦Óã¬ÊôÓÚ֪ʶµÄ×ÛºÏÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ê¯¾°É½Çøһģ£©¶¨Ò壺ÈôÊýÁÐ{An}Âú×ãAn+1=An2£¬Ôò³ÆÊýÁÐ{An}Ϊ¡°Æ½·½µÝÍÆÊýÁС±£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬µã£¨an£¬an+1£©ÔÚº¯Êýf£¨x£©=2x2+2xµÄͼÏóÉÏ£¬ÆäÖÐnΪÕýÕûÊý£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{2an+1}ÊÇ¡°Æ½·½µÝÍÆÊýÁС±£¬ÇÒÊýÁÐ{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ®
£¨2£©É裨1£©ÖС°Æ½·½µÝÍÆÊýÁС±µÄÇ°nÏîÖ®»ýΪTn£¬¼´Tn=£¨2a1+1£©£¨2a2+1£©¡­£¨2an+1£©£¬ÇóÊýÁÐ{an}µÄͨÏî¼°Tn¹ØÓÚnµÄ±í´ïʽ£®
£¨3£©¼Çbn=log2an+1Tn£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîÖ®ºÍSn£¬²¢ÇóʹSn£¾2011µÄnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺ÈôÊýÁÐ{an}¶ÔÈÎÒâµÄÕýÕûÊýn£¬¶¼ÓÐ|an+1|+|an|=d£¨dΪ³£Êý£©£¬Ôò³Æ{an}Ϊ¡°¾ø¶ÔºÍÊýÁС±£¬d½Ð×ö¡°¾ø¶Ô¹«ºÍ¡±£¬ÒÑÖª¡°¾ø¶ÔºÍÊýÁС±{an}ÖУ¬a1=2£¬¡°¾ø¶Ô¹«ºÍ¡±d=2£¬ÔòÆäÇ°2012ÏîºÍS2012µÄ×îСֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺ÈôÊýÁÐ{An}Âú×ãAn+1=
A
2
n
Ôò³ÆÊýÁÐ{An}Ϊ¡°Æ½·½µÝÍÆÊýÁС±£¬ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬µã{an£¬an+1}ÔÚº¯Êýf£¨x£©=2x2+2xµÄͼÏóÉÏ£¬ÆäÖÐnµÄÕýÕûÊý£®
£¨1£©Ö¤Ã÷ÊýÁÐ{2an+1}ÊÇ¡°Æ½·½µÝÍÆÊýÁС±£¬ÇÒÊýÁÐ{lg£¨2an+1£©}ΪµÈ±ÈÊýÁУ»
£¨2£©É裨1£©ÖС°Æ½·½µÝÍÆÊýÁС±µÄÇ°nÏîÖ®»ýΪTn£¬¼´Tn=£¨2a1+1£©£¨2a2+1£©¡­£¨2an+1£©£¬ÇóÊýÁÐ{an}µÄͨÏî¼°Tn¹ØÓÚnµÄ±í´ïʽ£»
£¨3£©¼Çbn=log2an+1Tn£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£¬²¢ÇóʹSn£¾2008µÄnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•³¤ÄþÇøһģ£©¶¨Ò壺ÈôÊýÁÐ{An}Âú×ãAn+1=An2£¬Ôò³ÆÊýÁÐ{An}Ϊ¡°Æ½·½µÝÍÆÊýÁС±£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬µã£¨an£¬an+1£©ÔÚº¯Êýf£¨x£©=x2+4x+2µÄͼÏóÉÏ£¬ÆäÖÐnΪÕýÕûÊý£®
£¨1£©ÅжÏÊýÁÐ{an+2}ÊÇ·ñΪ¡°Æ½·½µÝÍÆÊýÁС±£¿ËµÃ÷ÀíÓÉ£®
£¨2£©Ö¤Ã÷ÊýÁÐ{lg£¨an+2£©}ΪµÈ±ÈÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏ
£¨3£©ÉèTn=£¨2+a1£©£¨2+a2£©¡­£¨2+an£©£¬ÇóTn¹ØÓÚnµÄ±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸