精英家教网 > 高中数学 > 题目详情

已知函数
(1)若x=1时取得极值,求实数的值;
(2)当时,求上的最小值;
(3)若对任意,直线都不是曲线的切线,求实数的取值范围。

(1)符合。
(2) ;
(3).

解析试题分析:(1)∵,∴,得          
时, ; 当时,
时取得极小值,故符合。               4分       
(2)当时,恒成立,上单调递增,
                          
时,由
,则,∴上单调递减。
,则,∴上单调递增。          
时取得极小值,也是最小值,即
综上所述,        8分           
(3)∵任意,直线都不是曲线的切线,
恒成立,即的最小值大于
的最小值为,∴,故.  12分
考点:利用导数研究函数的单调性、极值,导数的几何意义。
点评:中档题,利用导数研究函数的单调性、极值,是导数应用的基本问题,主要依据“在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数”。确定函数的极值,遵循“求导数,求驻点,研究单调性,求极值”。不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得到解决。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)记的导函数,若不等式上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立.求)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为正实数,的一个极值点.
(Ⅰ)求的值;
(Ⅱ)当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且处的切线方程为.
(1)求的解析式;
(2)证明:当时,恒有
(3)证明:若,且,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),其图像在点(1,)处的切线方程为.
(1)求,的值;
(2)求函数的单调区间和极值;
(3)求函数在区间[-2,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

, 已知函数 
(Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线在点处的切线相互平行, 且 证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数.
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线的斜率为负数时,求在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的最小值;
(2)若直线对任意的都不是曲线的切线,求的取值范围;
(3)设,求的最大值的解析式

查看答案和解析>>

同步练习册答案