精英家教网 > 高中数学 > 题目详情

【题目】某学生对函数的性质进行研究,得出如下的结论:

①函数上单调递增,在上单调递减;

②点是函数图像的一个对称中心;

③存在常数,使对一切实数均成立;

④函数图像关于直线对称.其中正确的结论是__________

【答案】

【解析】分析:利用函数的性质逐一判断一下命题的正确性.

详解:对于①,f(x)=2xcosx为奇函数,则函数f(x)在[﹣π,0],[0,π]上单调性相同,所以

对于②,由于f(0)=0,f(π)=﹣2π,说明两点并不关于点中心对称,所以

对于③,|f(x)|=|2xcosx|=|2x||cosx|≤2|x|,令M=2,则|f(x)|≤M|x|对一切实数x均成立,所以

对于④,由 f(0)=0,f(2π)=4π,说明两点并不关于直线对称,所以错.

故答案为:③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

为了保护环境,发展低碳经济,某单位在政府部门的支持下,进行技术攻关,采用了新工艺,新上了把二氧化碳转化为一种可利用的化工产品的项目.经测算,月处理成本(元)与月处理量(吨)之间的函数关系可以近似的表示为:,且每处理一吨二氧化碳可得到能利用的化工产品价值为200元,若该项目不获利,政府将补贴.

(I)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;

(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).

(1)从袋中任意取出一个球,求其重量大于其编号的概率;

(2)如果不放回地任意取出2个球,求它们重量相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点(1,13),且函数 是偶函数.

(1)求的解析式;

(2)已知,,求函数在[,2]上的最大值和最小值;

(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线 的焦点,斜率为 的直线交抛物线于 )两点,且 .
(1)求该抛物线的方程;
(2) 为坐标原点, 为抛物线上一点,若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由经验得知,在某商场付款处排队等候付款的人数及概率如表:

排队人数

人以上

概率

(1)至多有人排队的概率是多少?

(2)至少有人排队的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且a2=3b2+3c2﹣2 bcsinA,则C的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占 ,采用微信支付的占 ,40岁以上采用微信支付的占
(Ⅰ)请完成下面2×2列联表:

40岁以下

40岁以上

合计

使用微信支付

未使用微信支付

合计

并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?
(Ⅱ)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,从“40岁以上”的人中抽取1人,了解使用微信支付的情况,问至少有一人使用微信支付的概率为多少?
参考公式: ,n=a+b+c+d.
参考数据:

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.760

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :方程 表示焦点在 轴上的椭圆,命题 :双曲线 的离心率 ,若命题 中有且只有一个为真命题,求实数 的取值范围.

查看答案和解析>>

同步练习册答案