【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B. C. D.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A-BCD中,,点E为棱CD上的一点,且.
(1)求证:平面平面BCD;
(2)若三棱锥A-BCD的体积为,求三棱锥E-ABD的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:
男生身高频率分布表
男生身高 (单位:厘米) | ||||||
频数 | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高频数分布表
女生身高 (单位:厘米) | ||||||
频数 | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估计这1000名学生中女生的人数;
(2)估计这1000名学生中身高在的概率;
(3)在样本中,从身高在的女生中任取2名女生进行调查,求这2名学生身高在的概率.(身高单位:厘米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为的正方形中,、分别为、的中点,沿将矩形折起使得,如图2所示,点在上,,、分别为、中点.
(1)求证:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
如图,已知抛物线,过点任作一直线与相交于两点,过点作轴的平行线与直线相交于点(为坐标原点).
(1)证明:动点在定直线上;
(2)作的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:),经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
(1)求图中的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com