分析 根据向量数量积的定义,可得$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{AB}$||$\overrightarrow{BC}$|•cos(π-∠B)>0,进而根据诱导公式和余弦的定义,得到结论.
解答 解:∵在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{AB}$||$\overrightarrow{BC}$|•cos(π-∠B)>0,
∴cos(π-∠B)>0,
∴cos∠B<0,
即B为钝角,
故△ABC为钝角三角形,
故答案为:钝角三角形
点评 本题考查的知识点是三角形形状的判断,平面向量数量积的运算,难度中档.
科目:高中数学 来源: 题型:选择题
A. | $-\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $-\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A={0,1} | B. | A={0,1,3} | C. | A={0,1,2,3} | D. | A={1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com