精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e为自然对数的底数)

(Ⅰ)当a=1时,求f(x)的单调区间;

(Ⅱ)若函数f(x)在 上无零点,求a的最小值;

(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

【答案】(1) f(x)的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f(x)在 上无零点,则a的最小值为2﹣4ln2;(3)a的范围是.

【解析】试题分析:(Ⅰ)把a=1代入到f(x)中求出f′(x),令f′(x)0求出x的范围即为函数的增区间,令f′(x)0求出x的范围即为函数的减区间;

fx)<0时不可能恒成立,所以要使函数在(0, )上无零点,只需要对x0 )时f(x)0恒成立,列出不等式解出a大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a的最小值;

(Ⅲ)求出g′(x),根据导函数的正负得到函数的单调区间,即可求出g(x)的值域,而当a=2时不合题意;当a2时,求出f′(x)=0时x的值,根据x∈(0,e]列出关于a的不等式得到,并根据此时的x的值讨论导函数的正负得到函数f(x)的单调区间,根据单调区间得到,令中不等式的坐标为一个函数,求出此函数的导函数,讨论导函数的正负得到函数的单调区间,根据函数的增减性得到此函数的最大值,即可解出恒成立和解出得到,联立即可解出满足题意a的取值范围.

试题解析:

(1)当a=1时,f(x)=x﹣1﹣2lnx,则f′(x)=1﹣

由f′(x)0,得x>2;

由f′(x)0,得0<x<2.

故f(x)的单调减区间为(0,2],单调增区间为[2,+∞);

(2)因为f(x)0在区间上恒成立不可能,

故要使函数上无零点,

只要对任意的,f(x)>0恒成立,即对恒成立.

,则

再令

,故m(x)在上为减函数,于是

从而,l(x)0,于是l(x)在上为增函数,所以

故要使恒成立,只要a∈[2﹣4ln2,+∞),

综上,若函数f(x)在 上无零点,则a的最小值为2﹣4ln2;

(3)g′(x)=e1﹣x﹣xe1﹣x=(1﹣x)e1﹣x

当x(0,1)时,g′(x)0,函数g(x)单调递增;

当x∈(1,e]时,g′(x)0,函数g(x)单调递减.

又因为g(0)=0,g(1)=1,g(e)=ee1﹣e>0,

所以,函数g(x)在(0,e]上的值域为(0,1].

当a=2时,不合题意;

当a2时,f′(x)=,x∈(0,e]

当x=时,f′(x)=0.

由题意得,f(x)在(0,e]上不单调,故,即

此时,当x变化时,f′(x),f(x)的变化情况如下:

x

(0,

,e]

f′(x)

0

+

f(x)

最小值

又因为,当x→0时,2﹣a>0,f(x)→+∞,

所以,对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),

使得f(xi)=g(x0)成立,当且仅当a满足下列条件:

令h(a)=

则h,令h′(a)=0,得a=0或a=2,

故当a∈(﹣∞,0)时,h′(a)0,函数h(a)单调递增;

时,h′(a)0,函数h(a)单调递减.

所以,对任意,有h(a)≤h(0)=0,

对任意恒成立.

式解得:.④

综合①④可知,当a的范围是 时,对任意给定的x00e],在(0,e]上总存在两个不同的xi(i=1,2),使f(xi=gx0)成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是边长为4的正方形,动点在以为直径的圆弧上,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 ).

(Ⅰ)若,设,试证明存在唯一零点,并求的最大值;

若关于的不等式的解集中有且只有两个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件,分别求直线方程:
(1)经过点A(3,0)且与直线2x+y﹣5=0垂直;
(2)求经过直线x﹣y﹣1=0与2x+y﹣2=0的交点,且平行于直线x+2y﹣3=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比不为1的等比数列{an}的前5项积为243,且2a3为3a2和a4的等差中项.
(1)求数列{an}的通项公式an
(2)若数列{bn}满足bn=bn1log3an+2(n≥2且n∈N*),且b1=1,求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+lnx(a∈R).

(1)当a=时,求f(x)在区间[1e]上的最大值和最小值;

(2)如果函数g(x),f1x),f2(x),在公共定义域D上,满足f1x)<gx)<f2(x),那么就称g(x)为f1x),f2(x)的“活动函数”.已知函数. 若在区间(1,+∞)上,函数f(x)是f1x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
附:K2=
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C是椭圆C: (a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆的中心,且·=0,||=2||

(1)求椭圆C的方程;

(2)过点(0,t)的直线l(斜率存在)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且||=||,求实数t的取值范围.

查看答案和解析>>

同步练习册答案