【题目】某校为提高学生身体素质,决定对毕业班的学生进行身体素质测试,每个同学共有4次测试机会,若某次测试合格就不用进行后面的测试,已知某同学每次参加测试合格的概率组成一个以 为公差的等差数列,若他参加第一次测试就通过的概率不足 ,恰好参加两次测试通过的概率为 .
(Ⅰ)求该同学第一次参加测试就能通过的概率;
(Ⅱ)求该同学参加测试的次数的分布列和期望.
【答案】解:(Ⅰ)设该同学四次测试合格的概率依次为: a,a+ ,a+ ,a+ (a≤ ),
则(1﹣a)(a+ )= ,即a2﹣ a+ =0,
解得a= 或a= ( > 舍去),
所以小李第一次参加测试就合格的概率为 ;
(Ⅱ)因为P(ξ=1)= ,P(ξ=2)= × = ,
P(ξ=3)= × × = ,
P(ξ=4)=1﹣P(ξ=1)﹣P(ξ=2)﹣P(ξ=3)= ,
所以ξ的分布列为:
ξ | 1 | 2 | 3 | 4 |
P |
所以ξ的数学期望为Eξ=1× +2× +3× +4× =
【解析】(Ⅰ)设出该同学第一次测试合格的概率为a,根据题意列方程求出a的值;(Ⅱ)该同学参加测试的次数ξ的可能取值是1、2、3、4,计算对应的概率值,写出分布列,计算数学期望即可.
【考点精析】通过灵活运用离散型随机变量及其分布列,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数 .
(Ⅰ)若曲线y=f(x)与直线y=kx相切于点P,求点P的坐标;
(Ⅱ)当a≤e时,证明:当x∈(0,+∞),f(x)≥a(x﹣lnx).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,4sinA+3cosB=5,4cosA+3sinB=2 ,则角C等于( )
A.150°或30°
B.120°或60°
C.30°
D.60°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C1: 一焦点与抛物线y2=8x的焦点F相同,若抛物线y2=8x的焦点到双曲线C1的渐近线的距离为1,P为双曲线左支上一动点,Q(1,3),则|PF|+|PQ|的最小值为( )
A.4
B.4
C.4
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2 , g(x)=alnx.
(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;
(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1 , x2 , 都有 >2恒成立,求实数a的取值范围;
(3)若在[1,e]上存在一点x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D′EC的位置,使D′A=2 ,如图<2>:若G,H分别为D′B,D′E的中点.
(1)求证:GH⊥平面AD′C;
(2)求平面D′AB与平面D′CE的夹角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com