精英家教网 > 高中数学 > 题目详情

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向的海面P处,且,并以的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为,并以的速度不断增大,问几小时后该城市开始受到台风的侵袭?

【答案】12小时后该城市开始受到台风侵袭

【解析】试题分析:先建立合适的直角坐标系,写出台风中心坐标的参数形式和区域的圆的方程,再利用点和圆的位置关系进行求解.

试题解析:如图建立坐标系以O为原点,正东方向为x轴正向.在时刻:(1)台风中心P()的坐标为此时台风侵袭的区域是

其中若在t时刻城市O受到台风的侵袭,则有

答:12小时后该城市开始受到台风的侵袭.

解法二:设在t时刻台风中心位于点Q,此时|OP|=300|PQ|=20t,台风侵袭范围的圆形区域半径为,可知

中,由余弦定理,得

若城市O受到台风的侵袭,则有,即

整理,得,解得,所以,12小时后该城市开始受到台风侵袭。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asin(2ωx+ )+ +b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是 ,最小值是
(1)求ω、a、b的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足 为数列的前项和,且,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC上的点,B1C∥平面A1BD

(1)求证:BD⊥平面

(2)若,求三棱锥A-BCB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x3﹣x2﹣x+a,若函数f(x)过点A(1,0),求函数在区间[﹣1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,以为对角线作正方形,记直线轴的交点为,问两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

1)判断直线与曲线的位置关系,并说明理由;

2)若直线和曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要想得到函数y=sin(x﹣ )的图象,只须将y=cosx的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有(  )

A.5个
B.4个
C.3个
D.2个

查看答案和解析>>

同步练习册答案