精英家教网 > 高中数学 > 题目详情

【题目】树立和践行绿水青山就是金山银山,坚持人与自然和谐共生的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示:

1)求的值;

2)求出样本的平均数(同一组数据用该区间的中点值作代表);

3)现在要从年龄较小的第12组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求第2组中抽到人的概率.

【答案】1;(241.5岁;(3

【解析】

1)由频率分布直方图即能求出

2)由频率分布直方图即能求出平均数和中位数;

3)第123组的人数分别为20人,30人,从第12组中用分层抽样的方法抽取5人,则第12组抽取的人数分别为2人,3人,再利用列举法即可求出.

1)由,得

2)平均数为;岁;

3)第123组的人数分别为20人,30人,从第12组中用分层抽样的方法抽取5人,

则第12组抽取的人数分别为2人,3人,分别记为

设从5人中随机抽取3人,为

10个基本事件,

从而第2组中抽到2人的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】st是不相等的两个正数,且s+slntt+tlns,则s+tst的取值范围为(

A.(﹣1B.(﹣0C.0+∞D.1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过的焦点且垂直于轴的直线被截得的弦长为,椭圆的离心率为.

1)求椭圆的标准方程;

2)经过右焦点的直线交于两点,线段的垂直平分线与轴相交于点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项的和为,记

1)若是首项为,公差为的等差数列,其中均为正数.

①当成等差数列时,求的值;

②求证:存在唯一的正整数,使得

2)设数列是公比为的等比数列,若存在)使得,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

1)求证:平面

2)求平面与平面所成二面角的正弦值;

3)若点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱柱中,,平面平面ABCM的中点,DAB中点.

(Ⅰ)证明:平面ACM.

(Ⅱ)求三棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆(a>b>0)的左、右焦点分别为. 已知都在椭圆上,其中为椭圆的离心率.

1)求椭圆的标准方程;

2)过作斜率为的直线交椭圆两点(点在点的左侧),且. ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为(  )

A B C D

查看答案和解析>>

同步练习册答案