【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示:
(1)求的值;
(2)求出样本的平均数(同一组数据用该区间的中点值作代表);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求第2组中抽到人的概率.
科目:高中数学 来源: 题型:
【题目】设s,t是不相等的两个正数,且s+slnt=t+tlns,则s+t﹣st的取值范围为( )
A.(﹣∞,1)B.(﹣∞,0)C.(0,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,过的焦点且垂直于轴的直线被截得的弦长为,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)经过右焦点的直线与交于,两点,线段的垂直平分线与轴相交于点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项的和为,记.
(1)若是首项为,公差为的等差数列,其中,均为正数.
①当,,成等差数列时,求的值;
②求证:存在唯一的正整数,使得.
(2)设数列是公比为的等比数列,若存在,(,,)使得,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量(百台) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形中,,,,四边形为矩形,,平面平面.
(1)求证:平面;
(2)求平面与平面所成二面角的正弦值;
(3)若点在线段上,且直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆(a>b>0)的左、右焦点分别为,. 已知和都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的标准方程;
(2)过作斜率为的直线交椭圆于两点(点在点的左侧),且. 若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com