【题目】如图,在空间四面体中, ⊥平面,,且.
(1)证明:平面⊥平面;
(2)求四面体体积的最大值,并求此时二面角的余弦值.
【答案】(1)见解析;(2),
【解析】
(1)由勾股定理可得,由线面垂直的性质可得,由线面垂直的判定定理可得面 ,从而可得结果;(2)设,则,
由棱锥的体积公式求得棱锥的体积,利用导数可得体积的最大值;以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求得平面与平面的法向量,利用空间向量夹角余弦公式求解即可.
(1),
故 即
又
由、得
故有平面⊥平面
(2)设,则
四面体的体积
,故在单增,在单减
易知时四面体的体积最大,且最大值是
以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系
则
设平面的法向量为 则由
取,得平面的一个法向量为
同理可得平面的一个法向量
由于是锐二面角,故所求二面角的余弦值为
科目:高中数学 来源: 题型:
【题目】已知函数, (为常数).
(1)若函数与函数在处有相同的切线,求实数的值;
(2)若,且,证明: ;
(3)若对任意,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点、,并且直线平分圆.
(1)求圆的方程;
(2)若过点,且斜率为的直线与圆有两个不同的交点、.
(i)求实数的取值范围;
(ii)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现要完成下列三项抽样调查:①从罐奶粉中抽取罐进行食品安全卫生检查;②高二年级有名学生,为调查学生的学习情况抽取一个容量为的样本;③从某社区户高收入家庭,户中等收入家庭,户低收入家庭中选出户进行消费水平调查.以下各调查方法较为合理的是( )
A.①系统抽样,②简单随机抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①分层抽样,②系统抽样,③简单随机抽样
D.①简单随机抽样,②系统抽样,③分层抽样
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为平行四边形,平面平面,,,,.
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com