精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若函数上单调递减,求实数的取值范围;

2)是否存在实数,使得上的值域恰好是?若存在,求出实数的值;若不存在,说明理由.

【答案】12)存在;

【解析】

1)根据单调性以及二次函数对称轴列不等式,解得结果;

2)根据对称轴与定义区间位置关系讨论函数单调性,确定对应函数值域,根据条件列方程解得结果.

解:(1)函数图象的对称轴时直线

要使上单调递减,应满足,解得

故实数的取值范围为

2)①当,即时,上单调递减,

若存在实数m使得上的值域是

,即,此时无解.

②当,即时,上单调递增,

,即,解得.

③当,即时,上先递增,再递减

所以处取最大值,则,解得6,不符合题意,舍去

综上可得,实数使得上的值域恰好是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.5

根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数:

模型甲: ,模型乙: .

1为了评价两种模型的拟合效果,完成以下任务:

完成下表计算结果精确到0.1)(备注: 称为相应于点的残差);

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

2.4

2

1.8

1.4

残差

0

0

0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

2这家企业在城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8.若按1中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.利润=收入-成本

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有.

(1)求椭圆的方程;

(2)设直线 上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的极值点, 求函数的单调性;

(2)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个半径为2千米,圆心角为的扇形游览区的平面示意图是半径上一点,是圆弧上一点,且.现在线段,线段及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段处每千米为元,线段及圆弧处每千米均为元.设弧度,广告位出租的总收入为元.

(1)求关于的函数解析式,并指出该函数的定义域;

(2)试问:为何值时,广告位出租的总收入最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足:,数列满足:对任意.

1)求数列与数列的通项公式;

2)记,数列的前项和为,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是(

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的20%

C.互联网行业中从事运营岗位的人数90后比80后多

D.互联网行业中从事运营岗位的人数90后比80前多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,底面是边长为2的正三角形,侧棱长为的中点

1)若,证明:平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案