精英家教网 > 高中数学 > 题目详情
已知函数y1=x,y2=2x-1,y3=7-x,g(x)取三个函数中的最小值,则g(x)的最大值为(  )
分析:根据函数解析式,在同一平面直角坐标系内作出大致图象,然后根据图象即可解答.
解答:解:解:分别画出函数y=x,y=2x-1,y=7-x的图象,
如图所示,实线部分即是函数f(x)=
x,      x≤1
2x-1,1<x≤
7
2
7-x,   x>
7
2
的图象,
由图象知函数f(x)的最大值是
7
2
,无最小值,
∴函数f(x)的最大值是
7
2

故选C.
点评:此题主要考查了一次函数与一次不等式的综合应用,要先画出函数的图象根据数形结合解题,锻炼了学生数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
tx
(t>0)
和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).
(1)求证:x1,x2是关于x的方程x2+2tx-t=0的两根;
(2)设|MN|=g(t),求函数g(t);
(3)在(2)的条件下,若在区间[2,16]内总存在m+1个实数a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1+x
1-x
满足性质f(x)+f(y)=f(
x+y
1+xy
)
.若f(
a+b
1+ab
)=1
f(
a-b
1-ab
)=2
,且|a|=1,|b|<1,求f(a)、f(-b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知函数f(x)=lnx-
1
2
ax2

(Ⅰ)若函数f(x)在x=1处有极值,求a的值;
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.问函数f(x)是否存在“中值相依切线”,请说明理由;
(Ⅲ)求证:[(n+1)!]2>(n+1)e2(n-2)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2(a∈R,a≠0)

(I)求函数f(x)的单调区间;
(II)已知点A(1,-
1
2
a),设B(x1y1)(x1>1)是曲线C:y=f(x)
图角上的点,曲线C上是否存在点M(x0,y0)满足:①x0=
1+x1
2
;②曲线C在点M处的切线平行于直线AB?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
tx
(x>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).
(1)求证:x1,x2为关于x的方程x2+2tx-t=0的两根;
(2)设|MN|=g(t),求函数g(t)的表达式.

查看答案和解析>>

同步练习册答案