【题目】(1)研究函数f(x)在(0,π)上的单调性;
(2)求函数g(x)=x2+πcosx的最小值.
【答案】(1)f(x)在(0,π )递减;(2).
【解析】
(1)根据,求导得,设m(x)=xcos x﹣sinx,x∈(0,π),通过求导来判断其正负,从而得到f′(x)的正负,进而研究f(x)的单调性.
(2)易知g(x)是偶函数,故只需求x∈[0,+∞)时g(x)的最小值,求导得g′(x)=2x﹣πsin x,根据sinx的特点,分x∈(0,)和时两种情况讨论g(x)单调性,进而求其最小值.
(1)因为,所以,
设m(x)=xcos x﹣sinx,x∈(0,π),
m′(x)=﹣xsin x<0,
所以m(x)在(0,π )递减,则m(x)<m(0)=0
故f′(x)<0,所以f(x)在(0,π )递减;
(2)观察知g(x)为偶函数,故只需求x∈[0,+∞)时g(x)的最小值,
由g′(x)=2x﹣πsin x,当x∈(0,) 时,设n(x)=2x﹣π sin x,则n′(x)=2﹣π cos x,显然 n′(x) 递增,
而n′(0)=2﹣π<0,,
由零点存在定理,存在唯一的,使得n′(x0)=0
当x∈(0,x0)时,n′(x)<0,n(x)递减,
当时,n′(x)>0,n(x)递增,
而n(0)=0,,故时,n(x)<0,
即时,g′(x)<0,则g(x)递减;
又当时,2x>π>π sin x,g′(x)>0,g(x) 递增;
所以.
科目:高中数学 来源: 题型:
【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的蔬菜没有售完,则批发商将没售完的蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.
(1)若某天该蔬菜批发商共购入6袋蔬菜,有4袋蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?
(2)以上述样本数据作为决策的依据.
(i)若今年蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋蔬菜,试估计该蔬菜批发商经销蔬菜的总盈利值;
(ii)若明年该蔬菜批发商每天购进蔬菜的袋数相同,试帮其设计明年的蔬菜的进货方案,使其所获取的平均利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣6ρcosθ+5=0,曲线C2的参数方程为(t为参数).
(1)求曲线C1的直角坐标方程,并说明是什么曲线?
(2)若曲线C1与C2相交于A、B两点,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S﹣EFG中必有( )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己知线段的黄金分割点,具体方法如下:(l)取线段AB=2,过点B作AB的垂线,并用圆规在垂线上截取BC=AB,连接AC;(2)以C为圆心,BC为半径画弧,交AC于点D;(3)以A为圆心,以AD为半径画弧,交AB于点E.则点E即为线段AB的黄金分割点.若在线段AB上随机取一点F,则使得BE≤AF≤AE的概率约为( )(参考数据:2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、点及抛物线.
(1)若直线过点及抛物线上一点,当最大时求直线的方程;
(2)轴上是否存在点,使得过点的任一条直线与抛物线交于点,且点到直线的距离相等?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的单调区间;
(2)若在上恒成立,求实数的取值范围;
(3)在(2)的条件下(提示:可以用第(2)问的结论),任意的,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com