精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=xekx(k≠0)
(1)函数f(x)的单调区间;
(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

分析 (Ⅰ)求出函数的导数,求出极值点$x=-\frac{1}{k}({k≠0})$,通过k>0,k<0,分别求出函数的单调增区间以及单调减区间即可.
(Ⅱ)利用(Ⅰ)判断函数的单调性,求出k的取值范围即可.

解答 解:(Ⅰ)由f′(x)=(1+kx)ekx=0,得$x=-\frac{1}{k}({k≠0})$,
若k>0,则当$x∈({-∞,-\frac{1}{k}})$时,f′(x)<0,函数f(x)单调递减,
当$x∈({-\frac{1}{k},+∞,})$时,f′(x)>0,函数f(x)单调递增,
若k<0,则当$x∈({-∞,-\frac{1}{k}})$时,f′(x)>0,函数f(x)单调递增,
当$x∈({-\frac{1}{k},+∞,})$时,f′(x)<0,函数f(x)单调递减,
(Ⅱ)由(Ⅰ)知,若k>0,则当且仅当$-\frac{1}{k}≤-1$,
即0<k≤1时,函数f(x)在(-1,1)内单调递增;
若k<0,则当且仅当$-\frac{1}{k}≥1$,即k≥-1时,函数f(x)在(-1,1)内单调递增,
综上可知,函数f(x)在区间(-1,1)内单调递增时,k的取值范围是[-1,0)∪(0,1].

点评 本题考查函数的单调性以及函数导数的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是减函数,则a的取值范围是(-∞,$\frac{9}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线x+2y-2=0与椭圆mx2+ny2=1交于点C,D,点M为CD的中点,直线OM(O为原点)的斜率为$\frac{1}{2}$,且OC⊥OD,则m+n=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某个实心零部件的形状是如图所示的几何体,其下部为底面是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD.上部为直四棱柱ABCD-A2B2C2D2
(1)证明:直线BD⊥平面ACC2A2
(2)现需要对该零件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米)每平方厘米的加工处理费为0.20元,需加工处理费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…,)阶“期待数列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)分别写出一个单调递增的3阶和4阶“期待数列”;
(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为Sk(k=1,2,3,…,n),试证:|Sk|≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=asinxcosx-cos2x的图象过点$(\frac{π}{8},0)$,
(1)求函数y=f(x)的单调减区间;
(2)求函数y=f(x)在$[{0,\;\;\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log2[$\sqrt{2}$sin(2x-$\frac{π}{3}$)]+$\sqrt{2-{x}^{2}}$的定义域为$[-\sqrt{2},-\frac{π}{3})∪(\frac{π}{6},\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“点P(tanα,cosα)在第二象限”是“角α的终边在第四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,则正数λ的取值范围为(  )
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

同步练习册答案