精英家教网 > 高中数学 > 题目详情
对于任意满足θ∈[0,
π
2
]
的θ,使得|sinθ-pcosθ-q|≤
2
-1
2
恒成立的所有实数对(p,q)是______.
∵对于任意满足θ∈[0,
π
2
]
的θ,使得|sinθ-pcosθ-q|≤
2
-1
2
恒成立
∴当θ=0时,|p+q|≤
2
-1
2

当θ=
π
4
时,|
2
2
(1-p)-q|≤
2
-1
2

当θ=
π
2
时,|1-q|≤
2
-1
2

①+②-1-2
2
≤p≤-1
由②③消去q得-1≤p≤3-2
2

∴p=-1
∴|
2
sin(θ+
π
4
)-q|≤
2
-1
2

∴|
2
-q|≤
2
-1
2
,|1-q|≤
2
-1
2

解得q=
1+
2
2

∴实数对(p,q)是(-1,
1+
2
2
)

故答案为:(-1,
1+
2
2
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a2b),g(x)>0的解集是(),
f(xg(x)>0的解集是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=(
x-1
x+1
)2
(x>1),
(1)若g(x)=
1
f-1(x)
+
x
+2
,求g(x)的最小值;
(2)若不等式(1-
x
)•f-1(x)>m•(m-
x
)
对于一切x∈[
1
4
1
2
]
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2,g(x)=(
1
2
x-m,若对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+3,g(x)=(6+a)•2x-1
(Ⅰ)若f(1)=f(3),求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,判断函数F(x)=
2
1+g(x)
的单调性,并给出证明;
(Ⅲ)当x∈[-2,2]时,f(x)≥a(a∉(-4,4))恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
ax+b
x2+1
在点M(1,f(1))
处的切线方程为x-y-1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=lnx,证明:g(x)≥f(x)对x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中既不是奇函数,又不是偶函数的是(  )
A.y=2|x|B.y=lg(x+
x2+1
)
C.y=2x+2-xD.y=lg
1
x+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=x2-1,对任意x∈[
3
2
,+∞),f(
x
m
)-4m2f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数为奇函数,若,则    

查看答案和解析>>

同步练习册答案