精英家教网 > 高中数学 > 题目详情
15.过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.-1B.-2C.-3D.不确定

分析 可得出抛物线y2=4x的焦点为(1,0),并画出图形,根据题意可设AB的方程为x=ky+1,联立抛物线方程消去x便得到y2-4ky-4=0,从而得出y1y2=-4,然后可设$A(\frac{{{y}_{1}}^{2}}{4},{y}_{1}),B(\frac{{{y}_{2}}^{2}}{4},{y}_{2})$,这样便可求出$\overrightarrow{OA}•\overrightarrow{OB}$的值.

解答 解:抛物线y2=4x的焦点坐标为(1,0),如图:
设直线AB的方程为x=ky+1,代入y2=4x消去x得:
y2-4ky-4=0;
∴y1y2=-4;
设$A(\frac{{{y}_{1}}^{2}}{4},{y}_{1}),B(\frac{{{y}_{2}}^{2}}{4},{y}_{2})$,则:
$\overrightarrow{OA}•\overrightarrow{OB}=\frac{{(y}_{1}{y}_{2})^{2}}{16}+{y}_{1}{y}_{2}=\frac{16}{16}-4=-3$.
故选C.

点评 考查抛物线的标准方程,过定点且斜率不为0的直线方程的设法,韦达定理,以及向量数量积的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.由直线y=x+2上的点P向圆C:(x-4)2+(y-2)2=1引切线PT(T为切点),当|PT|的值最小时,点P的坐标是(  )
A.(-1,1)B.(0,2)C.(-2,0)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.方程2x=$\sqrt{2}$的解=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是y=f(x)的导函数y=f′(x)的图象,下列判断正确的是(  )
A.在区间(-2,1)内f(x) 是增函数B.在区间(1,3)内f(x) 是减函数
C.在区间(4,5)内f(x) 是增函数D.在x=2时,f(x)取到极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)设f(x)=ax+b,且$\int_{\;-1}^{\;1}{{{[{f(x)}]}^2}dx}=2$,求f(a)的取值范围.
(2)求函数f(x)=x3-3x过点P(1,-2)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A,B,C不共线,对于空间任意一点O都有$\overrightarrow{OP}$=$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{8}$$\overrightarrow{OB}$+$\frac{1}{8}$$\overrightarrow{OC}$,则P,A,B,C四点(  )
A.不共面B.共面C.共线D.不共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.${T_n}=({1-\frac{1}{1+2}})({1-\frac{1}{1+2+3}})•…•({1-\frac{1}{1+2+3+…+n}})$=$\frac{(n+1)+2}{3(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为(  )
A.1200B.2400C.3000D.3600

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$y=\frac{1}{2}sin(2x-\frac{π}{3})$的对称中心是($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z.

查看答案和解析>>

同步练习册答案