精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

(1)当时,讨论函数的单调性;

(2)当时,求证:对任意的.

【答案】(1上是单调递减的函数;(2)详见解析.

【解析】试题分析:(1)求导,根据导函数的取值情况分析的单调性;(2)令,求导,分析其单调性,进而研究其取值情况,问题等价于证明即可得证..

试题解析:(1)当时,

时, 上是单调递减的函数;(2)设,令,当时, ,有上是减函数,即上是减函数,

存在唯一的,使得时, 在区间单调递增;

时, 在区间单调递减,因此在区间

,将其代入上式得

,则,即有

的对称轴函数在区间上是增函数,且

,( ),即任意,因此任意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方,且.

1求椭圆的方程;

2为椭圆与轴正半轴的交点时,求直线方程;

3对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

已知圆的极坐标方程为,直线的参数方程为为参数).若直线与圆相交于不同的两点.

(1)写出圆的直角坐标方程,并求圆心的坐标与半径;

(2)若弦长,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,若的三条边长,则下列结论中正确的是( )

①存在,使不能构成一个三角形的三条边

②对一切,都有

③若为钝角三角形,则存在,使

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)

(Ⅰ)3个女生必须排在一起,有多少种不同的排法?

(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?

(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系

(1)求圆的参数方程;

(2)在直角坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标;

(3)已知为参数),曲线为参数),若版曲线上各点恒坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长为的线段的两个端点分别在轴和轴上滑动.

(1)求线段的中点的轨迹的方程;

(2)当时,曲线轴交于两点,点在线段上,过轴的垂线交曲线于不同的两点,点在线段上,满足的斜率之积为-2,试求的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆两点,且的周长为8.

(1)求椭圆的方程;

(2)过点作圆的切线交椭圆两点,求弦长的最大值.

查看答案和解析>>

同步练习册答案