【题目】已知函数,其中为自然对数的底数.
(1)当时,讨论函数的单调性;
(2)当时,求证:对任意的.
科目:高中数学 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
已知圆的极坐标方程为,直线的参数方程为(为参数).若直线与圆相交于不同的两点.
(1)写出圆的直角坐标方程,并求圆心的坐标与半径;
(2)若弦长,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中,若是的三条边长,则下列结论中正确的是( )
①存在,使、、不能构成一个三角形的三条边
②对一切,都有
③若为钝角三角形,则存在,使
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)
(Ⅰ)3个女生必须排在一起,有多少种不同的排法?
(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系
(1)求圆的参数方程;
(2)在直角坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标;
(3)已知为参数),曲线为参数),若版曲线上各点恒坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长为的线段的两个端点和分别在轴和轴上滑动.
(1)求线段的中点的轨迹的方程;
(2)当时,曲线与轴交于两点,点在线段上,过作轴的垂线交曲线于不同的两点,点在线段上,满足与的斜率之积为-2,试求与的面积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的观测值: (其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆于两点,且的周长为8.
(1)求椭圆的方程;
(2)过点作圆的切线交椭圆于两点,求弦长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com