A. | a≥1 | B. | a≥$\frac{8}{9}$ | C. | a≥$\frac{7}{8}$ | D. | a≥$\frac{5}{6}$ |
分析 先求出$\frac{1}{2}≤\frac{y}{x}≤2$,不等式(x+y)2≤2ax2+(a+1)y2有解⇒a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解,令$\frac{y}{x}=t,t∈[\frac{1}{2},2]$⇒a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解?at2-2t+(2a-1)≥有解,分离参数将问题转化为存在问题即可.
解答 解:∵正实数x,y满足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),
∴$lo{g}_{2}\frac{y}{x}$=m,-1≤m≤1,∴$\frac{1}{2}≤\frac{y}{x}≤2$,
∵不等式(x+y)2≤2ax2+(a+1)y2有解,
∴a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解,
令$\frac{y}{x}=t,t∈[\frac{1}{2},2]$,∴a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解?at2-2t+(2a-1)≥有解,
即存在t$∈[\frac{1}{2},2]$使a≥$\frac{2t+1}{{t}^{2}+2}$成立,
令g(t)=$\frac{2t+1}{{t}^{2}+2}$,g′(t)=$\frac{-2(t+2)(t-1)}{({t}^{2}+2)^{2}}$
∴$g(t)在(\frac{1}{2},1)递增,在(1,2)递减$,∴$g(\frac{1}{2})>g(2)$
g(t)的最小值$g(2)=\frac{5}{5}$,a$≥\frac{5}{6}$.
故选:D.
点评 本题考查的是不等式与存在性综问题.在解答的过程当中充分体现了分离参数的办法、以及整体代换的技巧.是中档题.
科目:高中数学 来源: 题型:选择题
A. | 有最小值-5 | B. | 有最大值-5 | C. | 有最小值-1 | D. | 有最大值-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①④ | B. | ②③ | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com