精英家教网 > 高中数学 > 题目详情
4.设正实数x,y满足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),若不等式(x+y)2≤2ax2+(a+1)y2有解,则实数a的取值范围是(  )
A.a≥1B.a≥$\frac{8}{9}$C.a≥$\frac{7}{8}$D.a≥$\frac{5}{6}$

分析 先求出$\frac{1}{2}≤\frac{y}{x}≤2$,不等式(x+y)2≤2ax2+(a+1)y2有解⇒a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解,令$\frac{y}{x}=t,t∈[\frac{1}{2},2]$⇒a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解?at2-2t+(2a-1)≥有解,分离参数将问题转化为存在问题即可.

解答 解:∵正实数x,y满足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),
∴$lo{g}_{2}\frac{y}{x}$=m,-1≤m≤1,∴$\frac{1}{2}≤\frac{y}{x}≤2$,
∵不等式(x+y)2≤2ax2+(a+1)y2有解,
∴a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解,
令$\frac{y}{x}=t,t∈[\frac{1}{2},2]$,∴a($\frac{y}{x}$)2-2•$\frac{y}{x}$+(2a-1)≥0有解?at2-2t+(2a-1)≥有解,
即存在t$∈[\frac{1}{2},2]$使a≥$\frac{2t+1}{{t}^{2}+2}$成立,
令g(t)=$\frac{2t+1}{{t}^{2}+2}$,g′(t)=$\frac{-2(t+2)(t-1)}{({t}^{2}+2)^{2}}$
∴$g(t)在(\frac{1}{2},1)递增,在(1,2)递减$,∴$g(\frac{1}{2})>g(2)$
g(t)的最小值$g(2)=\frac{5}{5}$,a$≥\frac{5}{6}$.
故选:D.

点评 本题考查的是不等式与存在性综问题.在解答的过程当中充分体现了分离参数的办法、以及整体代换的技巧.是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,则F(x)在(-∞,0)上(  )
A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2
(Ⅰ)求证:平面EFP⊥平面BCE
(Ⅱ)求几何体ADC-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)解不等式$\frac{2x+1}{3-x}≥1$
(2)已知x>0,y>0,且x+y=1,求 $\frac{4}{x}$+$\frac{9}{y}$ 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=ln(1-$\frac{2}{x}$)+1,则f(-7)+f(-5 )+f(-3)+f(-1)+f(3 )+f( 5)+f(7 )+f( 9)=(  )
A.0B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设抛物线E:y2=2px(p>0)上的点M(x0,4)到焦点F的距离|MF|=$\frac{5}{4}$x0
(Ⅰ)求抛物线E的方程;
(Ⅱ)如图,直线l:y=k(x+2)与抛物线E交于A,B两点,点A关于x轴的对称点是C,求证:直线BC恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设m,n表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若α∥β,m?α,则m∥β;
③若m⊥α,n∥α,则m⊥n;
④若m⊥n,m⊥α,n∥β,则α⊥β.
其中正确命题的序号是(  )
A.①④B.②③C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“若x>2,则x>1”的否命题是(  )
A.若x<2,则x<1B.若x≤2,则x≤1C.若x≤1,则x≤2D.若x<1,则x<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-2ax,a∈R.
(1)若函数y=f(x)存在与直线2x-y=0平行的切线,求实数a的取值范围;
(2)设g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有极大值点x1,求证:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.

查看答案和解析>>

同步练习册答案