精英家教网 > 高中数学 > 题目详情
16.若直线y=kx是曲线f(x)=x3+3x2-9x+1的切线,则k的值为-12或-$\frac{21}{4}$.

分析 设切点为(m,n),求出函数的导数,求得切线的斜率,由已知切线方程可得k,再由切点在曲线上和切线上,满足方程,可得m和k.

解答 解:设切点为(m,n),则n=km,
n=m3+am2-a2m+1,
又f(x)=x3+3x2-9x+1的导数为
f′(x)=3x2+6x-9,
可得切线的斜率为k=3m2+6m-9,
消去n,k可得2m3+3m2-1=0,
即为(m+1)2(2m-1)=0,
解得m=-1或$\frac{1}{2}$,
可得k=-12或-$\frac{21}{4}$.
故答案为:-12或-$\frac{21}{4}$.

点评 本题考查导数的运用:求切线的方程,主要考查导数的几何意义,设出切点和正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知点P1(x1,y1)和P2(x2,y2),P是直线P1P2上一点,且P1P=-2PP2,则P点坐标为(-x1+2x2,-y1+2y2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,且b2+c2-$\sqrt{2}$bc=a2
(1)求角A;
(2)若a=$\sqrt{3}$,cosB=$\frac{4}{5}$,求该三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=cos(3x+$\frac{π}{3}$),其中x∈[$\frac{π}{6}$,m],若f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],则m的取值范围是$\frac{2π}{9}$≤m≤$\frac{5π}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.令函数f(x)=x2+ax+a-$\frac{3}{a}$(a≠0)且-1≤x≤1.
(1)当a=1时,求f(x)的取值范围;
(2)对任意实数x,在-1≤x≤1内始终有f(x)≤0,求a的取值范围;
(3)当a≥2时,有实数x使得f(x)≤0.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线2x+3y-1=0垂直于向量$\overrightarrow{n}$=(m,-1),则m的值为(  )
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在三角形ABC中,sin(A-B)=$\frac{1}{5}$,sinC=$\frac{3}{5}$,求证:tanA=2tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若数列{cn}的前n项和为Tn,且满足cn+2TnTn-1=0(n≥2),c1=$\frac{1}{2}$,求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=log2$\frac{2x+10}{3}$,则f(1)=2.

查看答案和解析>>

同步练习册答案